Crypto Flexs
  • DIRECTORY
  • CRYPTO
    • ETHEREUM
    • BITCOIN
    • ALTCOIN
  • BLOCKCHAIN
  • EXCHANGE
  • TRADING
  • SUBMIT
Crypto Flexs
  • DIRECTORY
  • CRYPTO
    • ETHEREUM
    • BITCOIN
    • ALTCOIN
  • BLOCKCHAIN
  • EXCHANGE
  • TRADING
  • SUBMIT
Crypto Flexs
Home»ADOPTION NEWS»Here’s why GPT-4 is ‘dumb’: Untangling the performance hit
ADOPTION NEWS

Here’s why GPT-4 is ‘dumb’: Untangling the performance hit

By Crypto FlexsJanuary 3, 20243 Mins Read
Facebook Twitter Pinterest LinkedIn Tumblr Email
Here’s why GPT-4 is ‘dumb’: Untangling the performance hit
Share
Facebook Twitter LinkedIn Pinterest Email

The areas of artificial intelligence (AI) and machine learning (ML) continue to advance, but they are not without obstacles. A classic example is the performance degradation colloquially referred to as ‘stupidity’ in large language models (LLMs) such as GPT-4. This issue has gained attention in AI discussions, especially since the publication of “Work Pollution: Language Models May No longer be Few-Shot,” which highlights the limitations and challenges currently facing LLM.

Chomba Bupe, a representative figure in the AI ​​community, highlighted X (formerly Twitter) has a major problem. LLMs tend to excel on the tasks and datasets they are trained on, but tend to falter on new, unseen data. The crux of the problem lies in the static nature of post-training in these models. Once the learning phase is complete, performance gradually deteriorates due to limited ability to adapt to new and evolving input distributions.

Source: DALL·E Generation

This performance degradation is of particular concern in areas such as programming, where language models are used and programming language updates occur frequently. Bupe points out that the basic design of the LLM is closer to memorization than understanding, which limits its effectiveness in solving new challenges.

Research conducted by Changmao Li and Jeffrey Flanigan further supports this view. They found that LLMs like GPT-3 outperform on older data sets than on training data. This finding is indicative of a phenomenon called task contamination, where a model’s zero-shot and few-shot features are compromised by limitations in the training data.

Continuous learning, as discussed by Bupe, emerges as a key area of ​​machine intelligence. The challenge is to develop ML models that can adapt to new information without compromising performance on previously learned tasks. this difficulty Contrast this with the adaptability of biological neural networks, which learn and adapt without similar drawbacks.

Alvin De Cruz offers an alternative perspective that suggests that the problem may lie in the evolving expectations of humans rather than in the inherent limitations of the model. But Bupe responds by highlighting the long-standing nature of these challenges in AI, particularly in the area of ​​continuous learning.

In summary, the conversation surrounding LLMs like GPT-4 highlights an important aspect of AI evolution: the essentials of models capable of continuous learning and adaptation. Despite its impressive capabilities, LLMs currently face significant limitations in keeping pace with a rapidly changing world, highlighting the need for more dynamic and evolving AI solutions.

Image source: Shutterstock

Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Hong Kong regulators have set a sustainable finance roadmap for 2026-2028.

January 30, 2026

ETH has recorded a negative funding rate, but is ETH under $3K discounted?

January 22, 2026

AAVE price prediction: $185-195 recovery target in 2-4 weeks

January 6, 2026
Add A Comment

Comments are closed.

Recent Posts

Bithumb’s Bitcoin blunder adds burden to users as legal action favors civil recovery

February 11, 2026

Altcoin of the Day: Grayscale’s LINK ETF Debuts. HYPE and ASTER soar up to 13%

February 10, 2026

Ethereum’s Big ZK Revealed Tomorrow: What to Expect

February 10, 2026

GoMining Simple Earn Enables Autonomous Bitcoin Yield Accrual Via Single-Toggle Integration

February 10, 2026

6 people arrested in France over kidnapping of magistrate for cryptocurrency ransom

February 9, 2026

XMoney Expands Domino’s Partnership To Greece, Powering Faster Checkout Experiences

February 9, 2026

Cango Inc. Releases 2025 Letter To Shareholders

February 9, 2026

BitGW details its revenue structure centered on trading services and long-term operational stability.

February 9, 2026

The Ultimate MiCA Playbook For Crypto Asset Service Providers

February 9, 2026

XRP And BTC Have Fallen Sharply, While KT DeFi Users Can Earn Up To $3,000 Per Day

February 9, 2026

Kamino Lend Fuzz Test Summary

February 8, 2026

Crypto Flexs is a Professional Cryptocurrency News Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of Cryptocurrency. We hope you enjoy our Cryptocurrency News as much as we enjoy offering them to you.

Contact Us : Partner(@)Cryptoflexs.com

Top Insights

Bithumb’s Bitcoin blunder adds burden to users as legal action favors civil recovery

February 11, 2026

Altcoin of the Day: Grayscale’s LINK ETF Debuts. HYPE and ASTER soar up to 13%

February 10, 2026

Ethereum’s Big ZK Revealed Tomorrow: What to Expect

February 10, 2026
Most Popular

Shiba Inu vs Avalanche: Is AVAX threatening SHIB’s reign?

May 6, 2024

Hyperliquid enters prediction market, HYPE increases by 20%

February 3, 2026

Strike founder JACK Mallers led the tethered billions of Bitcoin purchasing ventures, 21 capital.

April 23, 2025
  • Home
  • About Us
  • Contact Us
  • Disclaimer
  • Privacy Policy
  • Terms and Conditions
© 2026 Crypto Flexs

Type above and press Enter to search. Press Esc to cancel.