Crypto Flexs
  • DIRECTORY
  • CRYPTO
    • ETHEREUM
    • BITCOIN
    • ALTCOIN
  • BLOCKCHAIN
  • EXCHANGE
  • TRADING
  • SUBMIT
Crypto Flexs
  • DIRECTORY
  • CRYPTO
    • ETHEREUM
    • BITCOIN
    • ALTCOIN
  • BLOCKCHAIN
  • EXCHANGE
  • TRADING
  • SUBMIT
Crypto Flexs
Home»ADOPTION NEWS»Claude 3.5 Sonnet, Enhanced Audio Data Analysis via Python
ADOPTION NEWS

Claude 3.5 Sonnet, Enhanced Audio Data Analysis via Python

By Crypto FlexsJuly 21, 20243 Mins Read
Facebook Twitter Pinterest LinkedIn Tumblr Email
Claude 3.5 Sonnet, Enhanced Audio Data Analysis via Python
Share
Facebook Twitter LinkedIn Pinterest Email

Terryl Dickey
July 20, 2024 11:23

Learn how to implement a seamless integration using AssemblyAI’s LeMUR framework and use the Claude 3 model with audio data in Python.





Anthropic’s recently released Claude 3.5 Sonnet sets a new industry benchmark for a variety of LLM tasks. The model excels at complex coding, nuanced literary analysis, and demonstrates exceptional contextual awareness and creativity.

According to AssemblyAI, users can now learn how to leverage Claude 3.5 Sonnet, Claude 3 Opus, and Claude 3 Haiku with audio or video files in Python.

claude3_remer_pipeline.png
Pipeline for applying the Claude 3 model to audio data

Some use cases for this pipeline include:

  • Create a summary of a long podcast or YouTube video
  • Ask a question about audio content
  • Create action items in meetings

How does it work?

Since language models primarily work with text data, they first need to transcribe audio data. Multimodal models can solve this, but they are still in the early stages of development.

To achieve this, AssemblyAI’s LeMUR framework is used. LeMUR simplifies the process by allowing you to combine industry-leading Speech AI models with LLM in just a few lines of code.

SDK Setup

To get started, install the AssemblyAI Python SDK, which includes all of LeMUR’s features.

pip install assemblyai

Then import the package and set up an API key, which you can get for free here.

import assemblyai as aai
aai.settings.api_key = "YOUR_API_KEY"

Transcribe audio or video files

Next, set up your audio or video file to transcribe. Transcriber And call transcribe() Function. You can pass a local file or a publicly accessible URL. For example, you could use an episode of Lenny’s podcast featuring Dalton Caldwell of Y Combinator.

audio_url = "https://storage.googleapis.com/aai-web-samples/lennyspodcast-daltoncaldwell-ycstartups.m4a"

transcriber = aai.Transcriber()
transcript = transcriber.transcribe(audio_url)

print(transcript.text)

Using Claude 3.5 Sonnet with Audio Data

The Claude 3.5 Sonnet is Anthropic’s most advanced model to date, outperforming the Claude 3 Opus in a number of evaluations while also being more cost-effective.

Please call to use Sonnet 3.5. transcript.lemur.task()A flexible endpoint that allows you to specify any prompt. It automatically adds the script as additional context to your model.

Specify aai.LemurModel.claude3_5_sonnet When calling LLM on a model. Here’s an example of a simple summary prompt:

prompt = "Provide a brief summary of the transcript."

result = transcript.lemur.task(
    prompt, final_model=aai.LemurModel.claude3_5_sonnet
)

print(result.response)

Using Claude 3 Opus with audio data

Claude 3 Opus is adept at handling complex analyses, long-term tasks with multiple steps, and high-level mathematical and coding tasks.

To use Opus, specify: aai.LemurModel.claude3_opus When calling LLM for a model, here is an example of a prompt that extracts specific information from a transcript.

prompt = "Extract all advice Dalton gives in this podcast episode. Use bullet points."

result = transcript.lemur.task(
    prompt, final_model=aai.LemurModel.claude3_opus
)

print(result.response)

Using Claude 3 Haiku with audio data

The Claude 3 Haiku is our fastest and most cost-effective model, ideal for light workloads.

To use Haiku, specify: aai.LemurModel.claude3_haiku When you call an LLM, it’s about the model. Here’s an example of a simple prompt to ask a question:

prompt = "What are tar pit ideas?"

result = transcript.lemur.task(
    prompt, final_model=aai.LemurModel.claude3_haiku
)

print(result.response)

Learn more about Prompt Engineering

Applying the Claude 3 model to audio data is straightforward using the AssemblyAI and LeMUR frameworks. To maximize the benefits of the LeMUR and Claude 3 models, please refer to the additional resources provided by AssemblyAI.

Image source: Shutterstock


Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Hong Kong regulators have set a sustainable finance roadmap for 2026-2028.

January 30, 2026

ETH has recorded a negative funding rate, but is ETH under $3K discounted?

January 22, 2026

AAVE price prediction: $185-195 recovery target in 2-4 weeks

January 6, 2026
Add A Comment

Comments are closed.

Recent Posts

Tether freezes $182 million in USDT, emphasizing centralized control of stablecoins.

February 4, 2026

Tramplin Introduces Premium Staking On Solana, A Proven Savings Model Rebuilt For Crypto

February 4, 2026

Zeta Network Group Outlines Strategic Focus On Real-World Asset Tokenisation As Part Of Institutional Digital Treasury Strategy

February 4, 2026

LBank launches 15th BoostHub campaign featuring Bitcoin offering 1 BTC as reward

February 4, 2026

Cango Inc. Announces January 2026 Bitcoin Production And Mining Operations Update

February 4, 2026

Hyperliquid enters prediction market, HYPE increases by 20%

February 3, 2026

Blockchain.com & Ondo Finance Launch Onchain Tokenized U.S. Stocks Across Europe

February 3, 2026

XMoney Appoints Raoul Pal As Strategic Advisor To Support The Next Phase Of Global Payments

February 3, 2026

Superform Expands To The U.S. With Mobile App Launch For A User-Owned Neobank

February 3, 2026

Enjin Launches Essence Of The Elements: A Cross-Game Multiverse Journey

February 3, 2026

Global Leading RWA Network Plume Lowers The Barrier For Korean Institutional Investment Through The KRW1 Stablecoin

February 3, 2026

Crypto Flexs is a Professional Cryptocurrency News Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of Cryptocurrency. We hope you enjoy our Cryptocurrency News as much as we enjoy offering them to you.

Contact Us : Partner(@)Cryptoflexs.com

Top Insights

Tether freezes $182 million in USDT, emphasizing centralized control of stablecoins.

February 4, 2026

Tramplin Introduces Premium Staking On Solana, A Proven Savings Model Rebuilt For Crypto

February 4, 2026

Zeta Network Group Outlines Strategic Focus On Real-World Asset Tokenisation As Part Of Institutional Digital Treasury Strategy

February 4, 2026
Most Popular

Neon EVM adopts network expansion to redefine Solana’s product category.

October 16, 2024

Kucoin receives the UNWWO “2025 Corporate Social Responsibility Award”.

April 1, 2025

Memeinator Price Prediction, Can MMTR Beat Dogecoin (DOGE)?

June 2, 2024
  • Home
  • About Us
  • Contact Us
  • Disclaimer
  • Privacy Policy
  • Terms and Conditions
© 2026 Crypto Flexs

Type above and press Enter to search. Press Esc to cancel.