Crypto Flexs
  • DIRECTORY
  • CRYPTO
    • ETHEREUM
    • BITCOIN
    • ALTCOIN
  • BLOCKCHAIN
  • EXCHANGE
  • TRADING
  • SUBMIT
Crypto Flexs
  • DIRECTORY
  • CRYPTO
    • ETHEREUM
    • BITCOIN
    • ALTCOIN
  • BLOCKCHAIN
  • EXCHANGE
  • TRADING
  • SUBMIT
Crypto Flexs
Home»ADOPTION NEWS»AI-Based Molecular Extinction Fight: A New Front in the Fight Against Drug-Resistant Pathogens
ADOPTION NEWS

AI-Based Molecular Extinction Fight: A New Front in the Fight Against Drug-Resistant Pathogens

By Crypto FlexsJuly 25, 20244 Mins Read
Facebook Twitter Pinterest LinkedIn Tumblr Email
AI-Based Molecular Extinction Fight: A New Front in the Fight Against Drug-Resistant Pathogens
Share
Facebook Twitter LinkedIn Pinterest Email

Jessie A Ellis
25 Jul 2024 01:48

Researchers are using AI to revive the DNA of extinct species to combat drug-resistant pathogens, a move that could potentially revolutionize antibiotic discovery.





According to the NVIDIA Technology Blog, researchers are using artificial intelligence (AI) to mine the DNA of long-extinct species like woolly mammoths and giant sloths, discovering genomic secrets that could help us fight today’s most contagious pathogens.

Coping with the Growing Crisis

According to the World Health Organization (WHO), more than 1.25 million people die each year worldwide from infections that are resistant to current drugs, such as antibiotics. This number is expected to increase to 10 million by 2050. Additionally, within six years, an estimated 24 million people could fall into extreme poverty due to the costs associated with treating infectious diseases.

AI and molecular extinction

Dr. Cesar de la Puente, a professor at the University of Pennsylvania, leads a team of researchers using AI in a process they call “molecular de-extinction,” a technique detailed in the paper. Nature Biomedical Engineering The goal is to analyse the DNA of extinct species by June 2024 to find new solutions to dangerous drug-resistant microbes.

“Exploring and comparing molecules across evolution can yield new biological insights,” Dr. de la Fuente explained. “AI-based molecular de-extinction work can help us bring back molecules from the past to address modern challenges.”

Advanced Computational Technology

Using a cluster of NVIDIA A100 GPUs, Dr. de la Fuente and his team trained deep learning models to mine the proteomes of living and extinct species. The scientists hypothesized that pathogens that have adapted to modern drugs may be vulnerable to antimicrobial defenses found in ancient genomes.

The team trained 40 variants of a deep learning model called APEX on DNA extracted from fossils of extinct animals and plants, including extinct species such as bears, penguins, and woolly mammoths. The training utilized a combination of 988 in-house generated peptides and thousands of publicly available antimicrobial peptides (AMPs) and non-AMPs.

The model, trained using the cuDNN-accelerated PyTorch framework on a single NVIDIA A100 GPU, predicted cryptic peptide sequences—protein fragments that the immune system uses to fight infections. APEX predicted over 37,000 peptide sequences with antimicrobial potential, 11,000 of which were not found in living organisms.

Laboratory Success Stories

From the peptides generated by APEX, the researchers synthesized 69 potential antibiotics. In laboratory tests, they treated mice infected with bacterial pathogens commonly found in human burn patients with these ancient peptides. The results were promising. Within two days, the experimental antibiotic mylodonin-2, derived from the giant sloth, showed significant improvements in the health of the mice, similar to those treated with the common antibiotic Polymyxin.

“Exploring extinct organisms gives us access to a wide range of molecules that modern pathogens don’t have access to,” Dr. de la Fuente said. “Molecular de-extinction could provide an arsenal of new compounds to combat one of humanity’s greatest threats: antimicrobial resistance.”

Future outlook

Researchers have discovered that the non-extinct antimicrobial molecule attacks microbes by depolarizing the inner membrane of the pathogen cell, a mechanism different from most known antimicrobial peptides. This innovative approach, made possible by advances in AI and GPU technology, sounds like the plot of a Michael Crichton novel.

Dr. de la Fuente believes generative AI has the potential to revolutionize drug discovery methods, reducing both the cost and time required to develop new antibacterial drugs. While traditional methods can take up to 15 years and cost more than $1 billion, an AI-based approach could significantly shorten that timeline.

“GPUs are changing the way we work in our lab,” Dr. de la Fuente said. “We can accomplish in a matter of hours what took us six years to do. This has dramatically accelerated antibiotic discovery. It’s like bringing science fiction to life.”

Dr. de la Fuente is in the early stages of establishing a company to commercialize the most promising antimicrobials discovered by his research team. The Machine Biology Group continues to explore promising antimicrobial peptides using the APEX model. Their work is open source and available on GitHub.

Readers interested in more detailed information can consult the Nature paper and other publications from Dr. de la Fuente’s lab.

Image source: Shutterstock


Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

AAVE price prediction: $185-195 recovery target in 2-4 weeks

January 6, 2026

Is BTC Price Heading To $85,000?

December 29, 2025

Crypto’s Capitol Hill champion, Senator Lummis, said he would not seek re-election.

December 21, 2025
Add A Comment

Comments are closed.

Recent Posts

As a bullish reversal pattern is formed ahead of the Fermi hard fork, BNB price is targeting $1,000.

January 6, 2026

Phemex Catalyzes 2026 Market Momentum With Dual Strategic Initiatives For Trader Empowerment

January 6, 2026

Mixed signals for Ethereum: Technical milestones and growing adoption offset market pressure

January 6, 2026

AAVE price prediction: $185-195 recovery target in 2-4 weeks

January 6, 2026

Cryptocurrency Wills and Trusts – Vault12

January 5, 2026

Taisu Ventures And Keio FinTEK Center Launch Keio ChainHack 2026 Focused On Web3 Innovation

January 5, 2026

SlotGPT launches new AI slots platform that turns players into creators

January 5, 2026

Bitcoin price rises 1.5% as Bitcoiners celebrate Genesis Day

January 4, 2026

Automated wallet leaks raise new cryptocurrency security concerns across the EVM network.

January 3, 2026

Ethereum 2025 Scalability and Decentralization

January 3, 2026

Bitmine Publishes New Chairman’s Message Explaining Why Shareholders Should Vote YES To Approve The Amendment To Increase Authorized Shares

January 2, 2026

Crypto Flexs is a Professional Cryptocurrency News Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of Cryptocurrency. We hope you enjoy our Cryptocurrency News as much as we enjoy offering them to you.

Contact Us : Partner(@)Cryptoflexs.com

Top Insights

As a bullish reversal pattern is formed ahead of the Fermi hard fork, BNB price is targeting $1,000.

January 6, 2026

Phemex Catalyzes 2026 Market Momentum With Dual Strategic Initiatives For Trader Empowerment

January 6, 2026

Mixed signals for Ethereum: Technical milestones and growing adoption offset market pressure

January 6, 2026
Most Popular

BNB price signals bullish exhaustion, is bearish attractive in the near term?

January 18, 2024

Multi-Signature – How do I know my Bitcoin transfer transaction is on Bisq?

January 5, 2024

Bitcoin could reach $50,000 in altcoin ‘FUD’ thanks to rises in Ethereum and Solana.

December 8, 2023
  • Home
  • About Us
  • Contact Us
  • Disclaimer
  • Privacy Policy
  • Terms and Conditions
© 2026 Crypto Flexs

Type above and press Enter to search. Press Esc to cancel.