Crypto Flexs
  • DIRECTORY
  • CRYPTO
    • ETHEREUM
    • BITCOIN
    • ALTCOIN
  • BLOCKCHAIN
  • EXCHANGE
  • TRADING
  • HACKING
  • SLOT
  • CASINO
  • SUBMIT
Crypto Flexs
  • DIRECTORY
  • CRYPTO
    • ETHEREUM
    • BITCOIN
    • ALTCOIN
  • BLOCKCHAIN
  • EXCHANGE
  • TRADING
  • HACKING
  • SLOT
  • CASINO
  • SUBMIT
Crypto Flexs
Home»ADOPTION NEWS»IBM Unveils Breakthrough PyTorch Technology for Faster AI Model Training
ADOPTION NEWS

IBM Unveils Breakthrough PyTorch Technology for Faster AI Model Training

By Crypto FlexsSeptember 22, 20243 Mins Read
Facebook Twitter Pinterest LinkedIn Tumblr Email
IBM Unveils Breakthrough PyTorch Technology for Faster AI Model Training
Share
Facebook Twitter LinkedIn Pinterest Email

Jessie A Ellis
18 Sep 2024 12:38

IBM Research aims to revolutionize AI model training by unveiling advancements in PyTorch, including a high-performance data loader and improved training throughput.





IBM Research has announced significant advances in the PyTorch framework to improve the efficiency of AI model training. These improvements were announced at the PyTorch Conference, highlighting a new data loader that can handle massive amounts of data and significant improvements in throughput for large-scale language model (LLM) training.

Improved data loader in PyTorch

A new high-throughput data loader allows PyTorch users to seamlessly distribute their LLM training workloads across multiple machines. This innovation allows developers to save checkpoints more efficiently, reducing redundant work. According to IBM Research, the tool was developed out of necessity by Davis Wertheimer and his colleagues, who needed a solution to efficiently manage and stream large amounts of data across multiple devices.

Initially, the team faced the problem that the existing data loader was causing a bottleneck in the training process. They iterated and improved the approach, creating a PyTorch native data loader that supports dynamic and adaptive operations. This tool ensures that previously seen data is not revisited even if resource allocation changes in the middle of a job.

In stress tests, the data loader streamed 2 trillion tokens without errors while running continuously for a month. It demonstrated the ability to load over 90,000 tokens per second per worker, which is equivalent to loading 500 billion tokens per day on 64 GPUs.

Maximize training throughput

Another important focus for IBM Research is optimizing GPU usage to avoid bottlenecks in AI model training. The team used Fully Sharded Data Parallel (FSDP) technology to evenly distribute large training datasets across multiple machines, improving the efficiency and speed of model training and tuning. Using FSDP with torch.compile significantly improved throughput.

IBM Research scientist Linsong Chu highlighted that his team was one of the first to train a model using torch.compile and FSDP, achieving a training speed of 4,550 tokens per second per GPU on an A100 GPU. This breakthrough was recently demonstrated with the Granite 7B model released on Red Hat Enterprise Linux AI (RHEL AI).

Additional optimizations are being explored, including the integration of the FP8 (8-point floating-point) data type supported by the Nvidia H100 GPU, which can increase throughput by up to 50 percent. IBM Research scientist Raghu Ganti highlighted the significant impact of these improvements on reducing infrastructure costs.

Future outlook

IBM Research continues to explore new areas, including using FP8 for model training and tuning IBM’s Artificial Intelligence Unit (AIU). The team is also focusing on Triton, Nvidia’s open source software for AI deployment and execution, which aims to further optimize training by compiling Python code into hardware-specific programming languages.

These advances aim to move faster cloud-based model training from experimental to broader community applications, potentially transforming the AI ​​model training landscape.

Image source: Shutterstock


Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Bitcoin Treasury Firm Strive adds an industry veterans and starts a new $ 950 million capital initiative.

September 16, 2025

The best Solana depin project to form the future -Part 2

September 8, 2025

Ether Lee (ETH) tests major support for $ 4,453 after the highest rejection.

August 31, 2025
Add A Comment

Comments are closed.

Recent Posts

Stablecoin Holdings Drop As Investors Pivot To SOL, XRP, And Altcoins

September 17, 2025

Flipster Partners With WLFI To Advance Global Stablecoin Adoption Through USD1 Integration

September 17, 2025

Zircuit Launches $495K Grants Program To Accelerate Web3 Super Apps

September 16, 2025

Kintsu Launches SHYPE On Hyperliquid

September 16, 2025

New Cryptocurrency Mutuum Finance (MUTM) Raises $15.8M As Phase 6 Reaches 40%

September 16, 2025

How XRP Enthusiasts Can Earn $15k/Day

September 16, 2025

Bringing 1R0R To R0AR Chain Unlocks New Incentives

September 16, 2025

As the Air drop recipient is sold, the infinite price is 46% conflict after Binance listing.

September 16, 2025

Vulnerability or orbit again? BTC has a line at $ 115K

September 16, 2025

Bitcoin Treasury Firm Strive adds an industry veterans and starts a new $ 950 million capital initiative.

September 16, 2025

France can break the EU password market with ‘atomic weapons’.

September 15, 2025

Crypto Flexs is a Professional Cryptocurrency News Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of Cryptocurrency. We hope you enjoy our Cryptocurrency News as much as we enjoy offering them to you.

Contact Us : Partner(@)Cryptoflexs.com

Top Insights

Stablecoin Holdings Drop As Investors Pivot To SOL, XRP, And Altcoins

September 17, 2025

Flipster Partners With WLFI To Advance Global Stablecoin Adoption Through USD1 Integration

September 17, 2025

Zircuit Launches $495K Grants Program To Accelerate Web3 Super Apps

September 16, 2025
Most Popular

Solana Mimecoin Protocol Unveils New ‘Short Squeeze’ Platform

August 21, 2024

DTCC Announces Collateral Allocation Change for Bitcoin-Linked ETF

April 28, 2024

NVIDIA Enhances Multilingual Information Retrieval with NeMo Retriever

December 18, 2024
  • Home
  • About Us
  • Contact Us
  • Disclaimer
  • Privacy Policy
  • Terms and Conditions
© 2025 Crypto Flexs

Type above and press Enter to search. Press Esc to cancel.