Crypto Flexs
  • DIRECTORY
  • CRYPTO
    • ETHEREUM
    • BITCOIN
    • ALTCOIN
  • BLOCKCHAIN
  • EXCHANGE
  • TRADING
  • SUBMIT
Crypto Flexs
  • DIRECTORY
  • CRYPTO
    • ETHEREUM
    • BITCOIN
    • ALTCOIN
  • BLOCKCHAIN
  • EXCHANGE
  • TRADING
  • SUBMIT
Crypto Flexs
Home»ADOPTION NEWS»Utilizes AMD Radeon GPUs for efficient Llama 3 fine-tuning
ADOPTION NEWS

Utilizes AMD Radeon GPUs for efficient Llama 3 fine-tuning

By Crypto FlexsOctober 8, 20242 Mins Read
Facebook Twitter Pinterest LinkedIn Tumblr Email
Utilizes AMD Radeon GPUs for efficient Llama 3 fine-tuning
Share
Facebook Twitter LinkedIn Pinterest Email

Felix Pinkston
October 8, 2024 04:46

Explore innovative ways to fine-tune Llama 3 on AMD Radeon GPUs with a focus on reducing compute costs and improving model efficiency.





As artificial intelligence continues to advance, the need for efficient model fine-tuning processes becomes increasingly important. A recent discussion between AMD experts Garrett Byrd and Dr. Joe Schoonover shed light on fine-tuning Llama 3, a large language model (LLM), using AMD Radeon GPUs. According to AMD.com, this process aims to improve model performance for specific tasks by tailoring the model to be more familiar with specific data sets or specific response requirements.

Complexity of model fine-tuning

Fine-tuning involves retraining the model to adapt to a new target dataset, a task that is computationally intensive and requires significant memory resources. The problem is that the training phase requires tuning billions of parameters, which is more challenging than the inference phase where the model simply fits into memory.

Advanced fine-tuning technology

AMD highlights several ways to address these issues, with a focus on reducing memory footprint during the fine-tuning process. One such approach is Parameter Efficient Fine-Tuning (PEFT), which focuses on tuning only a small subset of parameters. This method eliminates the need to retrain every single parameter, significantly reducing computation and storage costs.

Low Rank Adaptation (LoRA) uses low-rank decomposition to further optimize the process by reducing the number of trainable parameters, accelerating the fine-tuning process while using less memory. Additionally, Quantized Low Rank Adaptation (QLoRA) leverages quantization techniques to minimize memory usage and convert high-precision model parameters to low-precision or integer values.

future development

To provide deeper insight into these technologies, AMD will be hosting a live webinar on October 15th focused on fine-tuning LLM for AMD Radeon GPUs. This event provides attendees with the opportunity to learn from experts how to optimize LLM to meet diverse and evolving computing requirements.

Image source: Shutterstock


Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Improved GitHub Actions: Announcing performance and flexibility upgrades

December 13, 2025

SOL price remains capped at $140 as altcoin ETF competitors reshape cryptocurrency demand.

December 5, 2025

Michael Burry’s Short-Term Investment in the AI ​​Market: A Cautionary Tale Amid the Tech Hype

November 19, 2025
Add A Comment

Comments are closed.

Recent Posts

Pepe Coin price looks set to fall 30% as whales begin to surrender.

December 19, 2025

Fake Zoom malware scam linked to North Korean hackers targets cryptocurrency users

December 18, 2025

Kalshi Integrates TRON Network, Expanding Onchain Liquidity Access For World’s Largest Prediction Market

December 18, 2025

Trump Interviews Pro-Crypto Waller for Fed Chair Today

December 18, 2025

Many Cryptocurrency ETFs Could Shut Soon After Launch: Analyst

December 18, 2025

Jito Foundation says its core operations will return to us. Credits GENIUS Act

December 17, 2025

Space Announces Public Sale Of Its Native Token, $SPACE

December 17, 2025

HKEX Lists HashKey After $206 Million IPO Quickly Sold Out

December 17, 2025

Capture The $140B Prediction Economy Become A Founding Partner Of X-MARKET

December 17, 2025

Bitcoin falls along with Ether and XRP as the market tests the $3 trillion bottom.

December 17, 2025

JZXN In Discussions To Acquire $1B In Tokens From AI Trading Firm At A Discount

December 17, 2025

Crypto Flexs is a Professional Cryptocurrency News Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of Cryptocurrency. We hope you enjoy our Cryptocurrency News as much as we enjoy offering them to you.

Contact Us : Partner(@)Cryptoflexs.com

Top Insights

Pepe Coin price looks set to fall 30% as whales begin to surrender.

December 19, 2025

Fake Zoom malware scam linked to North Korean hackers targets cryptocurrency users

December 18, 2025

Kalshi Integrates TRON Network, Expanding Onchain Liquidity Access For World’s Largest Prediction Market

December 18, 2025
Most Popular

Developers launch plans to tighten gas limits

March 21, 2024

Bitcoin, BTC price counts down to $100,000 due to ‘violent breakout’ of short selling risk

November 22, 2024

Coinbase Vaults Cross 1 Million Bitcoin Mark, Stash Value Is Over $52 Billion

February 17, 2024
  • Home
  • About Us
  • Contact Us
  • Disclaimer
  • Privacy Policy
  • Terms and Conditions
© 2025 Crypto Flexs

Type above and press Enter to search. Press Esc to cancel.