Crypto Flexs
  • DIRECTORY
  • CRYPTO
    • ETHEREUM
    • BITCOIN
    • ALTCOIN
  • BLOCKCHAIN
  • EXCHANGE
  • TRADING
  • SUBMIT
Crypto Flexs
  • DIRECTORY
  • CRYPTO
    • ETHEREUM
    • BITCOIN
    • ALTCOIN
  • BLOCKCHAIN
  • EXCHANGE
  • TRADING
  • SUBMIT
Crypto Flexs
Home»ADOPTION NEWS»NVIDIA’s EMBark revolutionizes training large-scale recommender systems.
ADOPTION NEWS

NVIDIA’s EMBark revolutionizes training large-scale recommender systems.

By Crypto FlexsNovember 25, 20242 Mins Read
Facebook Twitter Pinterest LinkedIn Tumblr Email
NVIDIA’s EMBark revolutionizes training large-scale recommender systems.
Share
Facebook Twitter LinkedIn Pinterest Email

Ted Hisokawa
November 21, 2024 02:40

NVIDIA introduces EMBark, which optimizes the embedding process to power deep learning recommendation models and significantly increases training efficiency for large-scale systems.





In an effort to increase the efficiency of large-scale recommender systems, NVIDIA introduced EMBark, a new approach that aims to optimize the embedding process of deep learning recommendation models. According to NVIDIA, recommender systems play a central role in the Internet industry, and training them efficiently is a critical task for many companies.

Challenges of training recommendation systems

Deep learning recommendation models (DLRMs) often incorporate billions of identity features and require robust training solutions. Recent advances in GPU technology, such as NVIDIA Merlin HugeCTR and TorchRec, have improved DLRM training by leveraging GPU memory to handle large-scale identity feature embeddings. However, as the number of GPUs increases, the communication overhead during embedding becomes a bottleneck, sometimes accounting for more than half of the total training overhead.

EMBark’s innovative approach

EMBark, presented at RecSys 2024, addresses these challenges by implementing a 3D flexible sharding strategy and communication compression techniques, aiming to balance the load during training and reduce communication time for embedding. The EMBark system includes three core components: an embedding cluster, a flexible 3D sharding scheme, and a sharding planner.

Includes cluster

These clusters promote efficient training by grouping similar features and applying custom compression strategies. EMBark categorizes clusters into data-parallel (DP), reduction-based (RB), and unique-based (UB) types, each suitable for different training scenarios.

Flexible 3D sharding method

This innovative scheme allows precise control of workload balancing across GPUs by leveraging 3D tuples to represent each shard. This flexibility addresses imbalance issues found in traditional sharding methods.

Sharding Planner

The sharding planner uses a greedy search algorithm to determine the optimal sharding strategy and improves the training process based on hardware and embedding configuration.

Performance and Evaluation

The efficiency of EMBark was tested on NVIDIA DGX H100 nodes, demonstrating significant improvements in training throughput. Across a variety of DLRM models, EMBark achieves an average 1.5x increase in training speed, with some configurations being up to 1.77x faster than existing methods.

EMBark significantly improves the efficiency of large-scale recommender system models by strengthening the embedding process, setting a new standard for deep learning recommender systems. To get more detailed insight into EMBark’s performance, you can view its research paper.

Image source: Shutterstock


Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Is BTC Price Heading To $85,000?

December 29, 2025

Crypto’s Capitol Hill champion, Senator Lummis, said he would not seek re-election.

December 21, 2025

Improved GitHub Actions: Announcing performance and flexibility upgrades

December 13, 2025
Add A Comment

Comments are closed.

Recent Posts

3 Small Cap Altcoins to Watch in the 2026 Prediction Market Boom

December 31, 2025

Test proxy contracts securely using Wake Framework

December 30, 2025

SlotGPT Launches A New AI Slot Platform Transforming Players Into Creators

December 30, 2025

Cango Inc. Secures US$10.5 Million Investment From EWCL To Accelerate Growth

December 30, 2025

Maya Preferred launches mandatory token conversion for regulatory infrastructure transition.

December 30, 2025

Ethereum price target surpasses $3,000, bull opportunity

December 29, 2025

Bitmine Immersion (BMNR) Announces ETH Holdings Reach 4.11 Million Tokens, And Total Crypto And Total Cash Holdings Of $13.2 Billion

December 29, 2025

Moneta Markets Review 2026 MT4/MT5 Crypto CFD Broker With ECN Spreads

December 29, 2025

Risk of Solana price collapse due to Double Top pattern formation and TVL decline

December 29, 2025

Ethereum’s 2026 roadmap includes more validator risk than you might think.

December 29, 2025

Is BTC Price Heading To $85,000?

December 29, 2025

Crypto Flexs is a Professional Cryptocurrency News Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of Cryptocurrency. We hope you enjoy our Cryptocurrency News as much as we enjoy offering them to you.

Contact Us : Partner(@)Cryptoflexs.com

Top Insights

3 Small Cap Altcoins to Watch in the 2026 Prediction Market Boom

December 31, 2025

Test proxy contracts securely using Wake Framework

December 30, 2025

SlotGPT Launches A New AI Slot Platform Transforming Players Into Creators

December 30, 2025
Most Popular

Coinbase’s rich violations are connected to $ 400 million in encryption, and court file disclosure

September 21, 2025

SEC Statement on X Account Hacking and Subsequent Announcement of Fake Bitcoin ETF Approval

January 13, 2024

Jailed Binance Employee’s Bail Application Denied Despite Medical Needs

October 12, 2024
  • Home
  • About Us
  • Contact Us
  • Disclaimer
  • Privacy Policy
  • Terms and Conditions
© 2025 Crypto Flexs

Type above and press Enter to search. Press Esc to cancel.