Crypto Flexs
  • DIRECTORY
  • CRYPTO
    • ETHEREUM
    • BITCOIN
    • ALTCOIN
  • BLOCKCHAIN
  • EXCHANGE
  • TRADING
  • SUBMIT
Crypto Flexs
  • DIRECTORY
  • CRYPTO
    • ETHEREUM
    • BITCOIN
    • ALTCOIN
  • BLOCKCHAIN
  • EXCHANGE
  • TRADING
  • SUBMIT
Crypto Flexs
Home»ADOPTION NEWS»NVIDIA’s EMBark revolutionizes training large-scale recommender systems.
ADOPTION NEWS

NVIDIA’s EMBark revolutionizes training large-scale recommender systems.

By Crypto FlexsNovember 25, 20242 Mins Read
Facebook Twitter Pinterest LinkedIn Tumblr Email
NVIDIA’s EMBark revolutionizes training large-scale recommender systems.
Share
Facebook Twitter LinkedIn Pinterest Email

Ted Hisokawa
November 21, 2024 02:40

NVIDIA introduces EMBark, which optimizes the embedding process to power deep learning recommendation models and significantly increases training efficiency for large-scale systems.





In an effort to increase the efficiency of large-scale recommender systems, NVIDIA introduced EMBark, a new approach that aims to optimize the embedding process of deep learning recommendation models. According to NVIDIA, recommender systems play a central role in the Internet industry, and training them efficiently is a critical task for many companies.

Challenges of training recommendation systems

Deep learning recommendation models (DLRMs) often incorporate billions of identity features and require robust training solutions. Recent advances in GPU technology, such as NVIDIA Merlin HugeCTR and TorchRec, have improved DLRM training by leveraging GPU memory to handle large-scale identity feature embeddings. However, as the number of GPUs increases, the communication overhead during embedding becomes a bottleneck, sometimes accounting for more than half of the total training overhead.

EMBark’s innovative approach

EMBark, presented at RecSys 2024, addresses these challenges by implementing a 3D flexible sharding strategy and communication compression techniques, aiming to balance the load during training and reduce communication time for embedding. The EMBark system includes three core components: an embedding cluster, a flexible 3D sharding scheme, and a sharding planner.

Includes cluster

These clusters promote efficient training by grouping similar features and applying custom compression strategies. EMBark categorizes clusters into data-parallel (DP), reduction-based (RB), and unique-based (UB) types, each suitable for different training scenarios.

Flexible 3D sharding method

This innovative scheme allows precise control of workload balancing across GPUs by leveraging 3D tuples to represent each shard. This flexibility addresses imbalance issues found in traditional sharding methods.

Sharding Planner

The sharding planner uses a greedy search algorithm to determine the optimal sharding strategy and improves the training process based on hardware and embedding configuration.

Performance and Evaluation

The efficiency of EMBark was tested on NVIDIA DGX H100 nodes, demonstrating significant improvements in training throughput. Across a variety of DLRM models, EMBark achieves an average 1.5x increase in training speed, with some configurations being up to 1.77x faster than existing methods.

EMBark significantly improves the efficiency of large-scale recommender system models by strengthening the embedding process, setting a new standard for deep learning recommender systems. To get more detailed insight into EMBark’s performance, you can view its research paper.

Image source: Shutterstock


Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Michael Burry’s Short-Term Investment in the AI ​​Market: A Cautionary Tale Amid the Tech Hype

November 19, 2025

BTC Rebound Targets $110K, but CME Gap Cloud Forecasts

November 11, 2025

TRX Price Prediction: TRON targets $0.35-$0.62 despite the current oversold situation.

October 26, 2025
Add A Comment

Comments are closed.

Recent Posts

Bitcoin falters, but institutional interest returns: December market outlook

December 3, 2025

Want To Have $1 Million In Retirement? ETCMining Cloud Mining Contracts Offer $8,600 In Daily Earnings

December 3, 2025

Pull the pin again

December 2, 2025

Ethereum takes a hit as buyers continue to protect key price floors.

December 2, 2025

Solana’s security and exchange protection measures were put in the spotlight following Korea’s Upbit hack.

December 2, 2025

Bybit, Mantle, And Aave Partner To Bring Institutional-Grade DeFi Liquidity Onchain At Global Scale

December 2, 2025

Mt Pelerin Launches The Crypto IBAN

December 2, 2025

Tria Enables Self-Custodied Bitcoin Top-Ups For Global Card Spending

December 2, 2025

Following The Appointment Of Sav Persico As Chief Operating Officer, Token Cat Limited Board Approves $1 Billion Crypto Asset Investment Policy

December 2, 2025

Cango Inc. Reports Third Quarter 2025 Unaudited Financial Results

December 2, 2025

BitMine adds 7,080 ETH for potential Ethereum rebound.

December 2, 2025

Crypto Flexs is a Professional Cryptocurrency News Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of Cryptocurrency. We hope you enjoy our Cryptocurrency News as much as we enjoy offering them to you.

Contact Us : Partner(@)Cryptoflexs.com

Top Insights

Bitcoin falters, but institutional interest returns: December market outlook

December 3, 2025

Want To Have $1 Million In Retirement? ETCMining Cloud Mining Contracts Offer $8,600 In Daily Earnings

December 3, 2025

Pull the pin again

December 2, 2025
Most Popular

New trading pairs and bot services added to Binance Spot

May 14, 2024

The approval of the Ethereum ETF failed to boost the cryptocurrency market, triggering a loss of $400 million.

May 26, 2024

Will Bitcoin halving push the price to new highs?

April 3, 2024
  • Home
  • About Us
  • Contact Us
  • Disclaimer
  • Privacy Policy
  • Terms and Conditions
© 2025 Crypto Flexs

Type above and press Enter to search. Press Esc to cancel.