Crypto Flexs
  • DIRECTORY
  • CRYPTO
    • ETHEREUM
    • BITCOIN
    • ALTCOIN
  • BLOCKCHAIN
  • EXCHANGE
  • TRADING
  • SUBMIT
Crypto Flexs
  • DIRECTORY
  • CRYPTO
    • ETHEREUM
    • BITCOIN
    • ALTCOIN
  • BLOCKCHAIN
  • EXCHANGE
  • TRADING
  • SUBMIT
Crypto Flexs
Home»ADOPTION NEWS»NVIDIA’s EMBark revolutionizes training large-scale recommender systems.
ADOPTION NEWS

NVIDIA’s EMBark revolutionizes training large-scale recommender systems.

By Crypto FlexsNovember 25, 20242 Mins Read
Facebook Twitter Pinterest LinkedIn Tumblr Email
NVIDIA’s EMBark revolutionizes training large-scale recommender systems.
Share
Facebook Twitter LinkedIn Pinterest Email

Ted Hisokawa
November 21, 2024 02:40

NVIDIA introduces EMBark, which optimizes the embedding process to power deep learning recommendation models and significantly increases training efficiency for large-scale systems.





In an effort to increase the efficiency of large-scale recommender systems, NVIDIA introduced EMBark, a new approach that aims to optimize the embedding process of deep learning recommendation models. According to NVIDIA, recommender systems play a central role in the Internet industry, and training them efficiently is a critical task for many companies.

Challenges of training recommendation systems

Deep learning recommendation models (DLRMs) often incorporate billions of identity features and require robust training solutions. Recent advances in GPU technology, such as NVIDIA Merlin HugeCTR and TorchRec, have improved DLRM training by leveraging GPU memory to handle large-scale identity feature embeddings. However, as the number of GPUs increases, the communication overhead during embedding becomes a bottleneck, sometimes accounting for more than half of the total training overhead.

EMBark’s innovative approach

EMBark, presented at RecSys 2024, addresses these challenges by implementing a 3D flexible sharding strategy and communication compression techniques, aiming to balance the load during training and reduce communication time for embedding. The EMBark system includes three core components: an embedding cluster, a flexible 3D sharding scheme, and a sharding planner.

Includes cluster

These clusters promote efficient training by grouping similar features and applying custom compression strategies. EMBark categorizes clusters into data-parallel (DP), reduction-based (RB), and unique-based (UB) types, each suitable for different training scenarios.

Flexible 3D sharding method

This innovative scheme allows precise control of workload balancing across GPUs by leveraging 3D tuples to represent each shard. This flexibility addresses imbalance issues found in traditional sharding methods.

Sharding Planner

The sharding planner uses a greedy search algorithm to determine the optimal sharding strategy and improves the training process based on hardware and embedding configuration.

Performance and Evaluation

The efficiency of EMBark was tested on NVIDIA DGX H100 nodes, demonstrating significant improvements in training throughput. Across a variety of DLRM models, EMBark achieves an average 1.5x increase in training speed, with some configurations being up to 1.77x faster than existing methods.

EMBark significantly improves the efficiency of large-scale recommender system models by strengthening the embedding process, setting a new standard for deep learning recommender systems. To get more detailed insight into EMBark’s performance, you can view its research paper.

Image source: Shutterstock


Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

ETH ETF loses $242M despite holding $2K in Ether

February 15, 2026

Hong Kong regulators have set a sustainable finance roadmap for 2026-2028.

January 30, 2026

ETH has recorded a negative funding rate, but is ETH under $3K discounted?

January 22, 2026
Add A Comment

Comments are closed.

Recent Posts

Best Altcoins to Buy Now as Bitcoin Is Watching Important Moving Averages

February 22, 2026

As privacy talk heats up, Dash integrates Zcash privacy pool.

February 22, 2026

Cardano (ADA) Bears Active — Token Risks Another Downside

February 21, 2026

Spot Bitcoin ​ETF records total net withdrawals of $3.8 billion over 5 weeks

February 21, 2026

Why the Unleash Protocol hack occurred due to governance failure

February 20, 2026

IP Strategy Announces Share Repurchase Program of Up to 1 Million Shares

February 20, 2026

Phemex Completes Full Integration Of Ondo Finance Tokenized Equity Suite

February 20, 2026

Unicity Labs Raises $3M To Scale Autonomous Agentic Marketplaces

February 19, 2026

Web3 Advertising Grows Up What Brands Will Demand In 2026

February 19, 2026

Are Sweeps Coins A Cryptocurrency Or Something Else?

February 19, 2026

XRP gains momentum as Arizona adds XRP to state cryptocurrency reserves.

February 19, 2026

Crypto Flexs is a Professional Cryptocurrency News Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of Cryptocurrency. We hope you enjoy our Cryptocurrency News as much as we enjoy offering them to you.

Contact Us : Partner(@)Cryptoflexs.com

Top Insights

Best Altcoins to Buy Now as Bitcoin Is Watching Important Moving Averages

February 22, 2026

As privacy talk heats up, Dash integrates Zcash privacy pool.

February 22, 2026

Cardano (ADA) Bears Active — Token Risks Another Downside

February 21, 2026
Most Popular

Qredo’s CEO is fired and the company is kept afloat by raising debt financing. source

December 21, 2023

HUZZ Coin Drops 85% in One Day: Can TikTok-Based Memecoin Recover?

November 22, 2024

Ethereum price appears ready for another leg higher once it finds support.

May 9, 2024
  • Home
  • About Us
  • Contact Us
  • Disclaimer
  • Privacy Policy
  • Terms and Conditions
© 2026 Crypto Flexs

Type above and press Enter to search. Press Esc to cancel.