Crypto Flexs
  • DIRECTORY
  • CRYPTO
    • ETHEREUM
    • BITCOIN
    • ALTCOIN
  • BLOCKCHAIN
  • EXCHANGE
  • TRADING
  • SUBMIT
Crypto Flexs
  • DIRECTORY
  • CRYPTO
    • ETHEREUM
    • BITCOIN
    • ALTCOIN
  • BLOCKCHAIN
  • EXCHANGE
  • TRADING
  • SUBMIT
Crypto Flexs
Home»ADOPTION NEWS»Accelerate causal inference with NVIDIA RAPIDS and cuML
ADOPTION NEWS

Accelerate causal inference with NVIDIA RAPIDS and cuML

By Crypto FlexsNovember 17, 20242 Mins Read
Facebook Twitter Pinterest LinkedIn Tumblr Email
Accelerate causal inference with NVIDIA RAPIDS and cuML
Share
Facebook Twitter LinkedIn Pinterest Email

Terrill Dickey
November 15, 2024 05:39

Learn how NVIDIA RAPIDS and cuML leverage GPU acceleration on large data sets to power causal inference and deliver significant speedups over traditional CPU-based methods.





As the amount of data generated by consumer applications continues to increase, enterprises are increasingly adopting causal inference methods to analyze observational data. According to the NVIDIA blog, this approach provides insight into how changes to specific components affect key business metrics.

Advances in causal inference technology

Over the past decade, econometricians have developed a technique called dual machine learning, which integrates machine learning models into causal inference problems. This involves training two prediction models on independent samples of the data set and combining them to produce an unbiased estimate of the target variable. Open source Python libraries such as DoubleML facilitate this technique, although it faces challenges when processing large data sets on CPUs.

NVIDIA RAPIDS and the role of cuML

NVIDIA RAPIDS, a collection of open source GPU-accelerated data science and AI libraries, includes cuML, a machine learning library for Python that is compatible with scikit-learn. By leveraging RAPIDS cuML with the DoubleML library, data scientists can achieve faster causal inference and effectively process large datasets.

The integration of RAPIDS cuML allows companies to bridge the gap between prediction-driven innovation and real-world applications by leveraging computationally intensive machine learning algorithms for causal inference. This is especially useful when existing CPU-based methods struggle to meet the requirements of growing data sets.

Improved benchmarking performance

The performance of cuML was benchmarked against scikit-learn using different dataset sizes. Results show that on a dataset with 10 million rows and 100 columns, the CPU-based DoubleML pipeline took over 6.5 hours, but GPU-accelerated RAPIDS cuML reduced this time to just 51 minutes, achieving a 7.7x speedup.

These accelerated machine learning libraries can provide up to 12x speedup over CPU-based methods with minimal code tweaks. These substantial improvements highlight the potential of GPU acceleration in transforming data processing workflows.

conclusion

Causal inference plays a critical role in helping companies understand the impact of key product components. However, leveraging machine learning innovations for this purpose has historically been difficult. Technologies such as dual machine learning combined with accelerated computing libraries such as RAPIDS cuML enable companies to overcome these challenges by turning hours of processing time into minutes with minimal code changes.

Image source: Shutterstock


Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Hong Kong regulators have set a sustainable finance roadmap for 2026-2028.

January 30, 2026

ETH has recorded a negative funding rate, but is ETH under $3K discounted?

January 22, 2026

AAVE price prediction: $185-195 recovery target in 2-4 weeks

January 6, 2026
Add A Comment

Comments are closed.

Recent Posts

Cango Inc. Announces January 2026 Bitcoin Production And Mining Operations Update

February 4, 2026

Hyperliquid enters prediction market, HYPE increases by 20%

February 3, 2026

Blockchain.com & Ondo Finance Launch Onchain Tokenized U.S. Stocks Across Europe

February 3, 2026

XMoney Appoints Raoul Pal As Strategic Advisor To Support The Next Phase Of Global Payments

February 3, 2026

Superform Expands To The U.S. With Mobile App Launch For A User-Owned Neobank

February 3, 2026

Enjin Launches Essence Of The Elements: A Cross-Game Multiverse Journey

February 3, 2026

Global Leading RWA Network Plume Lowers The Barrier For Korean Institutional Investment Through The KRW1 Stablecoin

February 3, 2026

Solana price falls to 10-month low due to ETF outflow

February 3, 2026

BLUFF Raises $21 Million To Power Betting Innovation

February 3, 2026

Is Ethereum transitioning into the AI ​​industry? Here’s what we know so far:

February 3, 2026

Cryptocurrency ETFs are diverse: Bitcoin is experiencing $60 million in outflows. ETH, SOL, and XRP funds are shown in green.

February 2, 2026

Crypto Flexs is a Professional Cryptocurrency News Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of Cryptocurrency. We hope you enjoy our Cryptocurrency News as much as we enjoy offering them to you.

Contact Us : Partner(@)Cryptoflexs.com

Top Insights

Cango Inc. Announces January 2026 Bitcoin Production And Mining Operations Update

February 4, 2026

Hyperliquid enters prediction market, HYPE increases by 20%

February 3, 2026

Blockchain.com & Ondo Finance Launch Onchain Tokenized U.S. Stocks Across Europe

February 3, 2026
Most Popular

AnyTopic enhances personalized audiobook experiences with ElevenLabs integration.

June 22, 2024

Bitcoin annual ROI: 1-10 years

February 17, 2024

Is the Bitcoin Bull Market in Danger? The analyst found a market top signal for BTC at $40,000.

December 18, 2023
  • Home
  • About Us
  • Contact Us
  • Disclaimer
  • Privacy Policy
  • Terms and Conditions
© 2026 Crypto Flexs

Type above and press Enter to search. Press Esc to cancel.