Crypto Flexs
  • DIRECTORY
  • CRYPTO
    • ETHEREUM
    • BITCOIN
    • ALTCOIN
  • BLOCKCHAIN
  • EXCHANGE
  • TRADING
  • SLOT
  • CASINO
  • SPORTSBET
  • SUBMIT
Crypto Flexs
  • DIRECTORY
  • CRYPTO
    • ETHEREUM
    • BITCOIN
    • ALTCOIN
  • BLOCKCHAIN
  • EXCHANGE
  • TRADING
  • SLOT
  • CASINO
  • SPORTSBET
  • SUBMIT
Crypto Flexs
Home»ADOPTION NEWS»Enhancing LLM Application Safety with LangChain Templates and NVIDIA NeMo Guardrails
ADOPTION NEWS

Enhancing LLM Application Safety with LangChain Templates and NVIDIA NeMo Guardrails

By Crypto FlexsJune 2, 20243 Mins Read
Facebook Twitter Pinterest LinkedIn Tumblr Email
Enhancing LLM Application Safety with LangChain Templates and NVIDIA NeMo Guardrails
Share
Facebook Twitter LinkedIn Pinterest Email





According to the NVIDIA Technology Blog, developers looking to deploy Large Language Model (LLM) applications more securely and faster now have a powerful solution with LangChain templates and NVIDIA NeMo Guardrails.

Benefits of Integrating NeMo Guardrails with LangChain Templates

LangChain templates provide developers with new ways to create, share, maintain, download, and customize LLM-based agents and chains. Using these templates, you can quickly create production-ready applications by leveraging FastAPI for seamless API development in Python. NVIDIA NeMo Guardrails can be integrated into these templates to provide content moderation, enhanced security, and LLM response evaluation.

As generative AI continues to evolve, incorporating guardrails will ensure that LLMs used in enterprise applications remain accurate, secure, and contextually relevant. The NeMo Guardrails platform provides programmable rules and runtime integration to control user input and validate the final LLM output before engaging in the LLM.

Use case setup

To demonstrate the integration, the blog post explores a Retrieval-Augmented Generation (RAG) use case using an existing LangChain template. This process involves downloading a template, modifying it to fit your specific use case, and then deploying the application with added guardrails to ensure security and correctness.

LLM guardrails help minimize hallucinations and maintain data security by implementing input and output self-inspection rails that obscure sensitive data or alter user input. For example, conversation rails can affect how an LLM responds, and search rails can obscure sensitive data in a RAG application.

Download and customize LangChain templates

To get started, developers need to install the LangChain CLI and the LangChain NVIDIA AI Foundation Endpoints package. You can download and customize the template by creating a new application project.

pip install -U langchain-cli
pip install -U langchain_nvidia_aiplay
langchain app nvidia_rag_guardrails --package nvidia-rag-canonical

The downloaded template sets up an ingestion pipeline for the Milvus vector database. In this example, the dataset contains sensitive information about Social Security benefits, making guardrail integration important for a secure response.

NeMo Guardrail Integration

To integrate NeMo Guardrails, developers must Handrail Configure the following required files: config.yml, disallowed.co, general.coand prompts.yml. These configurations define guardrail flows that control the chatbot’s behavior and ensure that it adheres to predefined rules.

For example, a disallowed flow can prevent a chatbot from responding to incorrect information, while a regular flow can define acceptable topics. Self-checking of user input and LLM output is also implemented to prevent cybersecurity attacks such as rapid injection.

Activate and use templates

To enable guardrails, developers must config.yml Create a file and set up your server for API access. The following code snippet shows how to integrate guardrails and set up a server.

from nvidia_guardrails_with_RAG import chain_with_guardrails as nvidia_guardrails_with_RAG_chain
add_routes(app, nvidia_guardrails_with_RAG_chain, path="/nvidia-guardrails-with-RAG")
from nvidia_guardrails_with_RAG import ingest as nvidia_guardrails_ingest
add_routes(app, nvidia_guardrails_ingest, path="/nvidia-rag-ingest")

Developers can then spin up a LangServe instance using the following command:

langchain serve

Examples of safe LLM interactions include:

"Question": "How many Americans receive Social Security Benefits?" 
"Answer": "According to the Social Security Administration, about 65 million Americans receive Social Security benefits."

conclusion

The integration of NeMo Guardrails with LangChain templates demonstrates a powerful approach to creating more secure LLM applications. By adding security measures and ensuring accurate responses, developers can build trustworthy and secure AI applications.

Image source: Shutterstock

. . .

tag


Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Crypto Exchange Rollish is expanded to 20 by NY approved.

October 2, 2025

SOL Leverage Longs Jump Ship, is it $ 200 next?

September 24, 2025

Bitcoin Treasury Firm Strive adds an industry veterans and starts a new $ 950 million capital initiative.

September 16, 2025
Add A Comment

Comments are closed.

Recent Posts

FLOKI Funds Clean Water Wells In Africa Through Partnership With WWFA

October 8, 2025

Jiuzi Holdings, Inc. Announces Phased Rollout Of $1 Billion Cryptocurrency Acquisition Plan; First Bitcoin Purchase To Be Completed Within Two Weeks

October 8, 2025

Rome Launches Its Genesis NFT Collection “Imperia” On Magic Eden Launchpad

October 8, 2025

BNB price is less than $1,300 on Meme Season Buzz

October 8, 2025

Cryptocurrency trader, OTC fraud claims $ 1.4 million losses, guessing due to KUCOIN deposits

October 7, 2025

Meanwhile, Bitcoin Life Insurer, Secures $82M To Meet Soaring Demand For Inflation-Proof Savings

October 7, 2025

Pepeto Presale Exceeds $6.93 Million; Staking And Exchange Demo Released

October 7, 2025

Eightco Holdings Inc. ($ORBS) Digital Asset Treasury Launches “Chairman’s Message” Video Series

October 7, 2025

Zeta Network Group Enters Strategic Partnership With SOLV Foundation To Advance Bitcoin-Centric Finance

October 7, 2025

Saylor tells MRBAST to buy Bitcoin even after pause the BTC purchase.

October 7, 2025

Bitcoin Steadies at Rally -Is another powerful brake out just in the future?

October 6, 2025

Crypto Flexs is a Professional Cryptocurrency News Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of Cryptocurrency. We hope you enjoy our Cryptocurrency News as much as we enjoy offering them to you.

Contact Us : Partner(@)Cryptoflexs.com

Top Insights

FLOKI Funds Clean Water Wells In Africa Through Partnership With WWFA

October 8, 2025

Jiuzi Holdings, Inc. Announces Phased Rollout Of $1 Billion Cryptocurrency Acquisition Plan; First Bitcoin Purchase To Be Completed Within Two Weeks

October 8, 2025

Rome Launches Its Genesis NFT Collection “Imperia” On Magic Eden Launchpad

October 8, 2025
Most Popular

Binance integrates ARC-20 tokens into Inscription Marketplace and offers commission-free trading

April 4, 2024

LangChain enhances the unified documentation with standardized pages and improved API references.

August 18, 2024

Huobi HTX responds to recent hack and ensures full compensation for affected users

November 25, 2023
  • Home
  • About Us
  • Contact Us
  • Disclaimer
  • Privacy Policy
  • Terms and Conditions
© 2025 Crypto Flexs

Type above and press Enter to search. Press Esc to cancel.