Crypto Flexs
  • DIRECTORY
  • CRYPTO
    • ETHEREUM
    • BITCOIN
    • ALTCOIN
  • BLOCKCHAIN
  • EXCHANGE
  • ADOPTION
  • TRADING
  • HACKING
  • SLOT
  • TRADE
Crypto Flexs
  • DIRECTORY
  • CRYPTO
    • ETHEREUM
    • BITCOIN
    • ALTCOIN
  • BLOCKCHAIN
  • EXCHANGE
  • ADOPTION
  • TRADING
  • HACKING
  • SLOT
  • TRADE
Crypto Flexs
Home»ADOPTION NEWS»IBM Unveils Breakthrough PyTorch Technology for Faster AI Model Training
ADOPTION NEWS

IBM Unveils Breakthrough PyTorch Technology for Faster AI Model Training

By Crypto FlexsSeptember 22, 20243 Mins Read
Facebook Twitter Pinterest LinkedIn Tumblr Email
IBM Unveils Breakthrough PyTorch Technology for Faster AI Model Training
Share
Facebook Twitter LinkedIn Pinterest Email

Jessie A Ellis
18 Sep 2024 12:38

IBM Research aims to revolutionize AI model training by unveiling advancements in PyTorch, including a high-performance data loader and improved training throughput.





IBM Research has announced significant advances in the PyTorch framework to improve the efficiency of AI model training. These improvements were announced at the PyTorch Conference, highlighting a new data loader that can handle massive amounts of data and significant improvements in throughput for large-scale language model (LLM) training.

Improved data loader in PyTorch

A new high-throughput data loader allows PyTorch users to seamlessly distribute their LLM training workloads across multiple machines. This innovation allows developers to save checkpoints more efficiently, reducing redundant work. According to IBM Research, the tool was developed out of necessity by Davis Wertheimer and his colleagues, who needed a solution to efficiently manage and stream large amounts of data across multiple devices.

Initially, the team faced the problem that the existing data loader was causing a bottleneck in the training process. They iterated and improved the approach, creating a PyTorch native data loader that supports dynamic and adaptive operations. This tool ensures that previously seen data is not revisited even if resource allocation changes in the middle of a job.

In stress tests, the data loader streamed 2 trillion tokens without errors while running continuously for a month. It demonstrated the ability to load over 90,000 tokens per second per worker, which is equivalent to loading 500 billion tokens per day on 64 GPUs.

Maximize training throughput

Another important focus for IBM Research is optimizing GPU usage to avoid bottlenecks in AI model training. The team used Fully Sharded Data Parallel (FSDP) technology to evenly distribute large training datasets across multiple machines, improving the efficiency and speed of model training and tuning. Using FSDP with torch.compile significantly improved throughput.

IBM Research scientist Linsong Chu highlighted that his team was one of the first to train a model using torch.compile and FSDP, achieving a training speed of 4,550 tokens per second per GPU on an A100 GPU. This breakthrough was recently demonstrated with the Granite 7B model released on Red Hat Enterprise Linux AI (RHEL AI).

Additional optimizations are being explored, including the integration of the FP8 (8-point floating-point) data type supported by the Nvidia H100 GPU, which can increase throughput by up to 50 percent. IBM Research scientist Raghu Ganti highlighted the significant impact of these improvements on reducing infrastructure costs.

Future outlook

IBM Research continues to explore new areas, including using FP8 for model training and tuning IBM’s Artificial Intelligence Unit (AIU). The team is also focusing on Triton, Nvidia’s open source software for AI deployment and execution, which aims to further optimize training by compiling Python code into hardware-specific programming languages.

These advances aim to move faster cloud-based model training from experimental to broader community applications, potentially transforming the AI ​​model training landscape.

Image source: Shutterstock


Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Stablecoin startups surpass 2021 venture capital peaks as institutional money spills.

June 28, 2025

Gala Games improves leader board rewards and introduces preference systems.

June 20, 2025

Ether Leeum Whale starts a $ 11 million leverage betting in the 30% increase in ETH prices.

June 12, 2025
Add A Comment

Comments are closed.

Recent Posts

Checkpoint #4: Berlinterop | Ether Leeum Foundation Blog

June 28, 2025

TRON Price Propects USDT supply exceeded $ 80 billion

June 28, 2025

Stablecoin startups surpass 2021 venture capital peaks as institutional money spills.

June 28, 2025

No Altcoin Season 2025 ? Why Bitcoin Dominance Is Holding Strong In The Crypto Market

June 28, 2025

Why It Matters For Every Crypto Investor

June 27, 2025

Why It Matters For Every Crypto Investor

June 27, 2025

Safe smart account audit summary

June 27, 2025

CARV’s New Roadmap Signals Next Wave Of Web3 AI

June 27, 2025

CARV’s New Roadmap Signals Next Wave Of Web3 AI

June 27, 2025

Bybit Expands Global Reach With Credit Card Crypto Purchases In 25+ Currencies And Cashback Rewards

June 27, 2025

BYDFi Joins Seoul Meta Week 2025, Advancing Web3 Vision And South Korea Strategy

June 27, 2025

Crypto Flexs is a Professional Cryptocurrency News Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of Cryptocurrency. We hope you enjoy our Cryptocurrency News as much as we enjoy offering them to you.

Contact Us : Partner(@)Cryptoflexs.com

Top Insights

Checkpoint #4: Berlinterop | Ether Leeum Foundation Blog

June 28, 2025

TRON Price Propects USDT supply exceeded $ 80 billion

June 28, 2025

Stablecoin startups surpass 2021 venture capital peaks as institutional money spills.

June 28, 2025
Most Popular

Microsoft and AFL-CIO partner to explore impact of AI on workforce

December 14, 2023

Binance co -founder clarifies the token list process in the TST debate.

February 10, 2025

Is Ethereum back? 267,000 new users hit, sparking speculation

May 3, 2024
  • Home
  • About Us
  • Contact Us
  • Disclaimer
  • Privacy Policy
  • Terms and Conditions
© 2025 Crypto Flexs

Type above and press Enter to search. Press Esc to cancel.