Crypto Flexs
  • DIRECTORY
  • CRYPTO
    • ETHEREUM
    • BITCOIN
    • ALTCOIN
  • BLOCKCHAIN
  • EXCHANGE
  • TRADING
  • SUBMIT
Crypto Flexs
  • DIRECTORY
  • CRYPTO
    • ETHEREUM
    • BITCOIN
    • ALTCOIN
  • BLOCKCHAIN
  • EXCHANGE
  • TRADING
  • SUBMIT
Crypto Flexs
Home»ADOPTION NEWS»NVIDIA improves Llama 3.3 70B model performance with TensorRT-LLM
ADOPTION NEWS

NVIDIA improves Llama 3.3 70B model performance with TensorRT-LLM

By Crypto FlexsDecember 18, 20242 Mins Read
Facebook Twitter Pinterest LinkedIn Tumblr Email
NVIDIA improves Llama 3.3 70B model performance with TensorRT-LLM
Share
Facebook Twitter LinkedIn Pinterest Email

Rebecca Moen
December 17, 2024 17:14

Learn how NVIDIA’s TensorRT-LLM uses advanced speculative decoding techniques to improve Llama 3.3 70B model inference throughput by up to 3x.





Meta’s latest addition to the Llama collection, the Llama 3.3 70B model, features significant performance improvements thanks to NVIDIA’s TensorRT-LLM. According to NVIDIA, the goal of this collaboration is to optimize the inference throughput of large language models (LLMs), increasing it by up to three times.

Advanced optimization with TensorRT-LLM

NVIDIA TensorRT-LLM uses several innovative technologies to maximize the performance of Llama 3.3 70B. Key optimizations include in-flight batching, KV caching, and custom FP8 quantization. These technologies are designed to improve LLM service efficiency, reduce latency, and improve GPU utilization.

Ongoing batch processing allows you to optimize throughput by processing multiple requests simultaneously. By interleaving requests across context and creation phases, we minimize latency and improve GPU utilization. Additionally, the KV cache mechanism saves computational resources by storing key-value elements of previous tokens, although it requires careful management of memory resources.

Speculative decoding technology

Speculative decoding is a powerful way to accelerate LLM inference. This allows us to generate multiple sequences of future tokens, which are processed more efficiently than a single token in autoregressive decoding. TensorRT-LLM supports a variety of speculative decoding techniques, including draft target, Medusa, Eagle, and predictive decoding.

These techniques significantly improve throughput, as evidenced by internal measurements using NVIDIA’s H200 Tensor Core GPUs. For example, using the draft model, throughput increases from 51.14 tokens per second to 181.74 tokens per second, achieving a 3.55x speedup.

Implementation and Deployment

To achieve these performance gains, NVIDIA provides a comprehensive setup to integrate the Llama 3.3 70B model with draft target speculative decoding. This includes downloading model checkpoints, installing TensorRT-LLM, and compiling model checkpoints with the optimized TensorRT engine.

NVIDIA’s commitment to advancing AI technology extends to collaborations with Meta and other partners aimed at advancing open community AI models. TensorRT-LLM optimizations not only improve throughput, but also reduce energy costs and improve total cost of ownership, making AI deployments more efficient across diverse infrastructures.

For more information about the setup process and further optimizations, visit the official NVIDIA blog.

Image source: Shutterstock


Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

TRX Price Prediction: TRON targets $0.35-$0.62 despite the current oversold situation.

October 26, 2025

BTC RSI hits April low as Coinbase premium turns red.

October 18, 2025

Crypto Exchange Rollish is expanded to 20 by NY approved.

October 2, 2025
Add A Comment

Comments are closed.

Recent Posts

EDGPU Drives Deep Integration of Digital Finance and Blockchain Industries with AI Cloud Computing Power, Providing Investors with Transparent and Secure Computing Power Services

November 9, 2025

Floki enters European market with launch of first exchange-traded product

November 9, 2025

Hash Global Report on MEET48: From Idol Production Factory to AIUGC & Web3 Entertainment Platform

November 9, 2025

Is Bitcoin price bottoming? The latest on-chain data suggests:

November 8, 2025

Cardano (ADA) Consolidating Below Resistance – Is Momentum Building?

November 8, 2025

Balancer’s $70 Million Breach Exposes DeFi’s Weak Foundation

November 8, 2025

Tempo invests $25 million in Commonware modular blockchain vision.

November 8, 2025

Mantle Collaborates With Bybit And Backed To Bring U.S. Equities Onchain, Pioneering Next Trillion-Dollar Wave Of Tokenized Assets

November 7, 2025

XRP Targets $4.00 While Digitap Presale Seen As The Best Crypto To Buy Now

November 7, 2025

XRP Targets $4.00 While Digitap Presale Seen As The Best Crypto To Buy Now

November 7, 2025

Bybit PWM Posts 16.9% Fund Return As Crypto Markets Weather “Uptober” Shock

November 7, 2025

Crypto Flexs is a Professional Cryptocurrency News Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of Cryptocurrency. We hope you enjoy our Cryptocurrency News as much as we enjoy offering them to you.

Contact Us : Partner(@)Cryptoflexs.com

Top Insights

EDGPU Drives Deep Integration of Digital Finance and Blockchain Industries with AI Cloud Computing Power, Providing Investors with Transparent and Secure Computing Power Services

November 9, 2025

Floki enters European market with launch of first exchange-traded product

November 9, 2025

Hash Global Report on MEET48: From Idol Production Factory to AIUGC & Web3 Entertainment Platform

November 9, 2025
Most Popular

Why is Litecoin (LTC) rising today?

February 19, 2025

Polygon (MATIC) Labs DeFi Director Joins Berachain

May 14, 2024

Solana under memecoin pressure: Will Trump’s victory be the next trigger?

October 14, 2024
  • Home
  • About Us
  • Contact Us
  • Disclaimer
  • Privacy Policy
  • Terms and Conditions
© 2025 Crypto Flexs

Type above and press Enter to search. Press Esc to cancel.