According to the NVIDIA Technology Blog, NVIDIA Modulus is reshaping the landscape of computational fluid dynamics (CFD) by integrating machine learning (ML) technology with groundbreaking developments. This approach addresses the critical computational requirements traditionally associated with high-fidelity fluid simulations, providing a path to modeling complex flows more efficiently and accurately.
The role of machine learning in CFD
Machine learning, especially using Fourier neural operators (FNOs), is revolutionizing CFD by reducing computational costs and increasing model accuracy. Using FNO significantly reduces computational cost by allowing training models on low-resolution data that can be incorporated into high-fidelity simulations.
NVIDIA Modulus, an open source framework, facilitates the use of FNO and other advanced ML models. It offers optimized implementations of state-of-the-art algorithms, making it a versatile tool for numerous applications in the field.
Innovative research at Technical University of Munich
The Technical University of Munich (TUM), led by Professor Nikolaus A. Adams, is at the forefront of integrating ML models into existing simulation workflows. Their approach combines the accuracy of traditional numerical methods with the predictive power of AI, resulting in significant performance gains.
Dr. Adams explains that by integrating ML algorithms such as FNO into the Lattice Boltzmann Method (LBM) framework, the team achieved significant speedups over traditional CFD methods. This hybrid approach allows complex fluid dynamics problems to be solved more efficiently.
Hybrid simulation environment
The TUM team developed a hybrid simulation environment that integrates ML into LBM. This environment excels at calculating multiphase and multicomponent flows with complex geometries. Using PyTorch to implement LBM takes advantage of efficient tensor computing and GPU acceleration, resulting in a fast and user-friendly TorchLBM solver.
By integrating FNO into their workflow, the team significantly improved computing efficiency. In tests involving Kármán Vortex Street and steady-state flow through porous media, the hybrid approach demonstrated stability and reduced computational costs by up to 50%.
Future Outlook and Industry Impact
TUM’s pioneering work sets a new standard for CFD research, demonstrating the enormous potential of machine learning in transforming fluid dynamics. The team plans to further improve the hybrid model and extend the simulation to a multi-GPU setup. They also aim to expand the possibilities for new applications by integrating workflows into NVIDIA Omniverse.
As more researchers adopt similar methodologies, the impact on a variety of industries will grow, potentially leading to more efficient designs, improved performance, and accelerated innovation. NVIDIA continues to support this change by making advanced AI tools accessible through platforms like Modulus.
Image source: Shutterstock