Crypto Flexs
  • DIRECTORY
  • CRYPTO
    • ETHEREUM
    • BITCOIN
    • ALTCOIN
  • BLOCKCHAIN
  • EXCHANGE
  • TRADING
  • SUBMIT
Crypto Flexs
  • DIRECTORY
  • CRYPTO
    • ETHEREUM
    • BITCOIN
    • ALTCOIN
  • BLOCKCHAIN
  • EXCHANGE
  • TRADING
  • SUBMIT
Crypto Flexs
Home»ADOPTION NEWS»NVIDIA NIM microservices improve LLM inference efficiency at scale.
ADOPTION NEWS

NVIDIA NIM microservices improve LLM inference efficiency at scale.

By Crypto FlexsAugust 16, 20243 Mins Read
Facebook Twitter Pinterest LinkedIn Tumblr Email
NVIDIA NIM microservices improve LLM inference efficiency at scale.
Share
Facebook Twitter LinkedIn Pinterest Email

Louisa Crawford
16 Aug 2024 11:33

NVIDIA NIM microservices optimize throughput and latency of large-scale language models to improve the efficiency and user experience of AI applications.





According to the NVIDIA Technology Blog, as large-scale language models (LLMs) continue to evolve at an unprecedented pace, enterprises are increasingly focused on building generative AI-based applications that maximize throughput and minimize latency. These optimizations are essential to lower operational costs and deliver superior user experiences.

Key metrics for measuring cost effectiveness

When a user sends a request to LLM, the system processes the request and generates a response by outputting a series of tokens. To minimize latency, multiple requests are often processed simultaneously. Throughput It measures the number of successful operations per unit of time, such as tokens per second, which is important for determining how well a business can handle concurrent user requests.

HiddenTime to First Token (TTFT) and Inter-Token Latency (ITL) are measured as delays before or between data transmissions. Lower latency ensures smooth user experiences and efficient system performance. TTFT measures the time it takes for a model to generate the first token after receiving a request, while ITL measures the interval between successive tokens.

Balancing throughput and latency

Enterprises need to balance throughput and latency based on the number of concurrent requests and the delay budget, which is the amount of delay that end users can tolerate. Increasing the number of concurrent requests can improve throughput, but it can also increase the latency of individual requests. Conversely, maintaining a set delay budget can optimize the number of concurrent requests to maximize throughput.

As the number of concurrent requests increases, businesses can deploy more GPUs to maintain throughput and user experience. For example, a chatbot that handles a surge in shopping requests during peak times will need multiple GPUs to maintain optimal performance.

How NVIDIA NIM Optimizes Throughput and Latency

NVIDIA NIM microservices provide a solution that maintains high throughput and low latency. NIM optimizes performance through techniques such as runtime refinement, intelligent model representation, and custom throughput and latency profiles. NVIDIA TensorRT-LLM further improves model performance by tuning parameters such as the number of GPUs and batch size.

Part of the NVIDIA AI Enterprise family, NIM is extensively tuned to ensure high performance for each model. Technologies such as Tensor Parallelism and in-flight batching process multiple requests in parallel to maximize GPU utilization, increase throughput, and reduce latency.

NVIDIA NIM Performance

Using NIM, enterprises have reported significant improvements in throughput and latency. For example, NVIDIA Llama 3.1 8B Instruct NIM delivers 2.5x faster throughput, 4x faster TTFT, and 2.2x faster ITL compared to the best open source alternative. A live demo showed that NIM On produced output 2.4x faster than NIM Off, demonstrating the efficiency gains that NIM’s optimized technology delivers.

NVIDIA NIM sets a new standard for enterprise AI, delivering unmatched performance, ease of use, and cost efficiency. Businesses that improve customer service, streamline operations, and drive innovation within their industries can benefit from NIM’s robust, scalable, and secure solutions.

Image source: Shutterstock


Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

ETH has recorded a negative funding rate, but is ETH under $3K discounted?

January 22, 2026

AAVE price prediction: $185-195 recovery target in 2-4 weeks

January 6, 2026

Is BTC Price Heading To $85,000?

December 29, 2025
Add A Comment

Comments are closed.

Recent Posts

What are Stable Coins?

January 24, 2026

Everstake lump sum deposit contract audit

January 23, 2026

Is Ethereum preparing to break $4,000 as BitMine chases its 5% supply stake?

January 23, 2026

TokenFi Unveils High-Visibility Branding Campaign Across Italy Ahead Of 2026 Winter Olympics

January 23, 2026

Coinbase Forms Advisory Board for Quantum Computing and Blockchain Research

January 23, 2026

Bitcoin price defends support as traders question the next uptrend

January 22, 2026

BTCC Exchange Nears 15-Year Mark With Plans For AI Trading Tools And Expanded RWA Offerings In 2026

January 22, 2026

VR concert debuts on leading Web3 entertainment platform

January 22, 2026

CryptoVista – Free Signals And Analytics That Give You An Edge

January 22, 2026

What does it take to scale tokenized collateral? – Enterprise Ethereum Alliance

January 22, 2026

ETH has recorded a negative funding rate, but is ETH under $3K discounted?

January 22, 2026

Crypto Flexs is a Professional Cryptocurrency News Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of Cryptocurrency. We hope you enjoy our Cryptocurrency News as much as we enjoy offering them to you.

Contact Us : Partner(@)Cryptoflexs.com

Top Insights

What are Stable Coins?

January 24, 2026

Everstake lump sum deposit contract audit

January 23, 2026

Is Ethereum preparing to break $4,000 as BitMine chases its 5% supply stake?

January 23, 2026
Most Popular

Trump receives $2 million worth of Bitcoin donation from Winklevoss twins

June 21, 2024

Cryptocito Net Scam Crypto Trading Platforms to Avoid

February 29, 2024

Is the internet capital market big next to encryption?

May 14, 2025
  • Home
  • About Us
  • Contact Us
  • Disclaimer
  • Privacy Policy
  • Terms and Conditions
© 2026 Crypto Flexs

Type above and press Enter to search. Press Esc to cancel.