Crypto Flexs
  • DIRECTORY
  • CRYPTO
    • ETHEREUM
    • BITCOIN
    • ALTCOIN
  • BLOCKCHAIN
  • EXCHANGE
  • TRADING
  • SUBMIT
Crypto Flexs
  • DIRECTORY
  • CRYPTO
    • ETHEREUM
    • BITCOIN
    • ALTCOIN
  • BLOCKCHAIN
  • EXCHANGE
  • TRADING
  • SUBMIT
Crypto Flexs
Home»ADOPTION NEWS»NVIDIA RAPIDS AI Revolutionizes Predictive Maintenance in Manufacturing
ADOPTION NEWS

NVIDIA RAPIDS AI Revolutionizes Predictive Maintenance in Manufacturing

By Crypto FlexsAugust 31, 20243 Mins Read
Facebook Twitter Pinterest LinkedIn Tumblr Email
NVIDIA RAPIDS AI Revolutionizes Predictive Maintenance in Manufacturing
Share
Facebook Twitter LinkedIn Pinterest Email

Ted Hisokawa
August 31, 2024 00:55

NVIDIA’s RAPIDS AI powers predictive maintenance in manufacturing with advanced data analytics, reducing downtime and operating costs.





According to the International Society of Automation (ISA), 5% of factory production is lost each year due to downtime. This equates to a global loss of approximately $647 billion for manufacturers across a wide range of industries. According to the NVIDIA Technical Blog, the most important challenge is to minimize downtime, reduce operating costs, and predict maintenance requirements to optimize maintenance schedules.

LatentView Analysis

A key player in this space, LatentView Analytics supports multiple Desktop as a Service (DaaS) customers. The $3 billion DaaS industry is growing 12% annually and faces unique challenges in predictive maintenance. LatentView has developed PULSE, an advanced predictive maintenance solution that leverages IoT-enabled assets and cutting-edge analytics to provide real-time insights and significantly reduce unplanned downtime and maintenance costs.

Remaining Use Life Use Cases

A leading computing device manufacturer wanted to implement effective preventive maintenance to address component failures occurring in millions of leased devices. LatentView’s predictive maintenance model aimed to reduce customer churn and increase profitability by predicting the remaining useful life (RUL) of each machine. The model aggregates data from key thermal, battery, fan, disk, and CPU sensors and applies it to a predictive model to predict machine failures and recommend timely repair or replacement.

The challenges we face

LatentView faced several challenges in its initial proof of concept, including computational bottlenecks and extended processing times due to massive data. Other challenges included handling large real-time data sets, sparse and noisy sensor data, complex multivariate relationships, and high infrastructure costs. These challenges required tools and library integrations that could dynamically scale and optimize total cost of ownership (TCO).

Accelerated predictive maintenance solution with RAPIDS

To overcome these challenges, LatentView has integrated NVIDIA RAPIDS into the PULSE platform. RAPIDS provides an accelerated data pipeline, operates on a platform familiar to data scientists, and efficiently processes sparse and noisy sensor data. This integration has resulted in significant performance improvements, enabling faster data loading, preprocessing, and model training.

Create faster data pipelines

Leveraging GPU acceleration parallelizes workloads, reducing the burden on CPU infrastructure, resulting in lower costs and improved performance.

Working on known platforms

RAPIDS leverages packages that are syntactically similar to popular Python libraries like pandas and scikit-learn, enabling data scientists to accelerate development without requiring new skills.

Exploring dynamic operating conditions

GPU acceleration allows models to seamlessly adapt to dynamic conditions and additional training data, ensuring robustness and responsiveness to changing patterns.

Processing sparse and noisy sensor data

RAPIDS significantly speeds up data preprocessing and effectively handles missing values, noise, and irregularities during data collection, laying the foundation for accurate prediction models.

Faster data loading and preprocessing, model training

Apache Arrow-based RAPIDS capabilities speed up data manipulation operations by more than 10x, reduce model iteration times, and enable multiple model evaluations in a short period of time.

CPU and RAPIDS performance comparison

LatentView performed a proof of concept to benchmark the performance of RAPIDS on GPUs and CPU-only models. The comparison highlighted significant speedups in data preparation, feature engineering, and group-by-group operations, achieving up to 639x improvement on certain tasks.

conclusion

The successful integration of RAPIDS into the PULSE platform has resulted in compelling predictive maintenance outcomes for LatentView’s customers. The solution is currently in the proof-of-concept phase and is expected to be fully deployed by Q4 2024. LatentView plans to continue leveraging RAPIDS to model projects across its manufacturing portfolio.

Image source: Shutterstock


Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

AAVE price prediction: $185-195 recovery target in 2-4 weeks

January 6, 2026

Is BTC Price Heading To $85,000?

December 29, 2025

Crypto’s Capitol Hill champion, Senator Lummis, said he would not seek re-election.

December 21, 2025
Add A Comment

Comments are closed.

Recent Posts

Wake Debugging Guide: Python-Based Robustness Testing

January 15, 2026

OpenServ And Neol Advance Enterprise-ready AI Reasoning Under Real-world Constraints

January 15, 2026

Bitmine Immersion Technologies (BMNR) Announces $200 Million Investment In Beast Industries

January 15, 2026

XRP, XLM have regained lost ground, but it could be a losing battle as new PayFi stories go viral.

January 15, 2026

Meme Coin Frenzy, DeFi Breakout and Best Altcoin Swings

January 15, 2026

Aster “Human Vs AI” Live Trading Competition Season 1 Concludes

January 14, 2026

PrimeXBT Expands Crypto Futures with 40 New Crypto Assets

January 14, 2026

PrimeXBT Expands Crypto Futures With 40 New Crypto Assets

January 14, 2026

Why Ethereum is poised to surpass Bitcoin in 2026

January 14, 2026

4 triggers for Q1 2026 that could push prices above $8

January 13, 2026

Vault12 open source WebAuthn/Passkey support for Electron on macOS: Enable Touch ID and iCloud Keychain in hybrid desktop apps

January 13, 2026

Crypto Flexs is a Professional Cryptocurrency News Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of Cryptocurrency. We hope you enjoy our Cryptocurrency News as much as we enjoy offering them to you.

Contact Us : Partner(@)Cryptoflexs.com

Top Insights

Wake Debugging Guide: Python-Based Robustness Testing

January 15, 2026

OpenServ And Neol Advance Enterprise-ready AI Reasoning Under Real-world Constraints

January 15, 2026

Bitmine Immersion Technologies (BMNR) Announces $200 Million Investment In Beast Industries

January 15, 2026
Most Popular

TUIMAX Secures U.S. MSB License To Build A Globally Trusted Trading Platform

June 20, 2025

Large money merchants buy ETH DIP

April 5, 2025

Analyst warns of ‘leverage-based’ XRP pump as token flips Tether

December 2, 2024
  • Home
  • About Us
  • Contact Us
  • Disclaimer
  • Privacy Policy
  • Terms and Conditions
© 2026 Crypto Flexs

Type above and press Enter to search. Press Esc to cancel.