Crypto Flexs
  • DIRECTORY
  • CRYPTO
    • ETHEREUM
    • BITCOIN
    • ALTCOIN
  • BLOCKCHAIN
  • EXCHANGE
  • TRADING
  • SUBMIT
Crypto Flexs
  • DIRECTORY
  • CRYPTO
    • ETHEREUM
    • BITCOIN
    • ALTCOIN
  • BLOCKCHAIN
  • EXCHANGE
  • TRADING
  • SUBMIT
Crypto Flexs
Home»ADOPTION NEWS»NVIDIA Unveils AutoMate to Advance Robotic Assembly Technology
ADOPTION NEWS

NVIDIA Unveils AutoMate to Advance Robotic Assembly Technology

By Crypto FlexsJuly 11, 20243 Mins Read
Facebook Twitter Pinterest LinkedIn Tumblr Email
NVIDIA Unveils AutoMate to Advance Robotic Assembly Technology
Share
Facebook Twitter LinkedIn Pinterest Email





In a major step forward in enhancing robotics capabilities, NVIDIA has unveiled a new framework called AutoMate, which aims to train robots for assembly tasks in a variety of geometries. This innovative framework, detailed in a recent NVIDIA Technology Blog post, demonstrates its potential to bridge the gap between simulation and real-world applications.

What is AutoMate?

AutoMate is the first simulation-based framework designed to train both expert and general robot assembly skills. Developed in collaboration with the University of Southern California and the NVIDIA Seattle Robotics Lab, AutoMate demonstrates zero-shot simulation-to-real transfer of the technology, meaning that skills learned in simulation can be directly applied to real environments without any additional tuning.

The main advantages of AutoMate are:

  • A dataset consisting of 100 assemblies and a ready-to-use simulation environment.
  • An algorithm that effectively trains robots to handle various assembly tasks.
  • It is a synthesis of learning approaches that distills knowledge from multiple specialized skills into a single general skill, further enhanced by reinforcement learning (RL).
  • A real system where simulation-trained skills can be deployed in a workflow initialized by perception.

Data sets and simulation environments

AutoMate’s dataset contains 100 assemblies that are simulation-compatible and 3D-printable. These assemblies are based on Autodesk’s large dataset, allowing practical applications in real-world environments. The simulation environment is designed to parallelize tasks, improving the efficiency of the training process.

Learning expert on various geometries

While previous NVIDIA projects like IndustReal have made progress using RL, AutoMate combines RL and imitation learning to train robots more effectively. This approach addresses three main challenges: generating demos for assembly, integrating imitation learning into RL, and selecting the right demos during training.

Creating a demo through assembly and disassembly

Inspired by the assemble-disassemble concept, this process involves collecting disassembled demonstrations and reversing the process for assembly. This method simplifies the collection of demonstrations, which can be expensive and complex if done manually.

RL with imitation goals

Incorporating an imitation term into the RL reward function improves the learning process by encouraging the robot to imitate the demonstration. This approach is consistent with previous work on character animation and provides a robust framework for training.

Select a demo using dynamic time warping

Dynamic Time Warping (DTW) is used to measure the similarity between the robot path and the demonstration path, allowing the robot to follow the most effective demonstration at each step. This method improves the robot’s ability to learn from the best available examples.

Learning general assembly techniques

To develop a generalist technique that can handle multiple assembly tasks, AutoMate uses a three-step approach: behavior replication, dataset aggregation (DAgger), and RL fine-tuning. This method allows the generalist technique to benefit from the knowledge accumulated by the expert technique to improve overall performance.

Real-world setup and perception initialization workflow

The real setup includes a Franka Panda robot arm, an Intel RealSense D435 camera mounted on the wrist, and a Schunk EGK40 gripper. The workflow includes RGB-D image capture, 6D pose estimation of the part, and deployment of the assembly skills trained in simulation. This setup ensures that the trained skills can be effectively applied to real-world conditions.

summary

AutoMate represents a significant advance in robotic assembly, leveraging simulation and learning methods to solve a wide range of assembly problems. Future steps will focus on multi-part assembly and further refine the technology to meet industry standards.

For more information, visit the AutoMate project page and explore related NVIDIA environments and tools.

Image source: Shutterstock



Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

ETH has recorded a negative funding rate, but is ETH under $3K discounted?

January 22, 2026

AAVE price prediction: $185-195 recovery target in 2-4 weeks

January 6, 2026

Is BTC Price Heading To $85,000?

December 29, 2025
Add A Comment

Comments are closed.

Recent Posts

MakinaFi suffered a $4.1 million Ethereum hack amid suspected MEV tactics.

January 27, 2026

Bybit, Mantle, And Byreal Partner To Extend CeDeFi Access For $MNT On Solana Via Mantle Super Portal

January 27, 2026

ZetaChain 2.0 Launches With Anuma, Bringing Private Memory And AI Interoperability To Creators

January 27, 2026

Phemex Introduces Elite Trader Recruitment Program Focused On Professional Copy Trading

January 27, 2026

Husky Inu AI (HINU) completed a conversion to $0.00025833 and the cryptocurrency market rebounded, but the stablecoin market cap fell by more than $2 billion.

January 27, 2026

Towards 2026 – How Multi-Currency Cloud Mining Can Build Sustainable Daily Settlement Returns Of 5000 XRP

January 26, 2026

BlackRock supports Ethereum gatekeeping tokenization despite market share being threatened.

January 26, 2026

Crypto.Casino Launches To Bring Transparency And Trust To Crypto Casinos

January 26, 2026

Why is SKY rising +8% while other cryptocurrencies are in the red?

January 25, 2026

Uniswap Price Outlook As Ethereum’s Vitalik Buterin Offloads UNI Tokens

January 25, 2026

Ethereum Bulls Need to Conquer $3,050 Otherwise, momentum is lost quickly.

January 25, 2026

Crypto Flexs is a Professional Cryptocurrency News Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of Cryptocurrency. We hope you enjoy our Cryptocurrency News as much as we enjoy offering them to you.

Contact Us : Partner(@)Cryptoflexs.com

Top Insights

MakinaFi suffered a $4.1 million Ethereum hack amid suspected MEV tactics.

January 27, 2026

Bybit, Mantle, And Byreal Partner To Extend CeDeFi Access For $MNT On Solana Via Mantle Super Portal

January 27, 2026

ZetaChain 2.0 Launches With Anuma, Bringing Private Memory And AI Interoperability To Creators

January 27, 2026
Most Popular

The Phantom Foundation is seeking to finalize multichain to recover funds lost in a $200 million exploit.

March 5, 2024

Wintermute Launches OutcomeMarket, a US Election Prediction Token

September 17, 2024

Spot Bitcoin ​​ETF records new trading volume ATH for 2 consecutive days

February 28, 2024
  • Home
  • About Us
  • Contact Us
  • Disclaimer
  • Privacy Policy
  • Terms and Conditions
© 2026 Crypto Flexs

Type above and press Enter to search. Press Esc to cancel.