Crypto Flexs
  • DIRECTORY
  • CRYPTO
    • ETHEREUM
    • BITCOIN
    • ALTCOIN
  • BLOCKCHAIN
  • EXCHANGE
  • ADOPTION
  • TRADING
  • HACKING
  • SLOT
  • TRADE
Crypto Flexs
  • DIRECTORY
  • CRYPTO
    • ETHEREUM
    • BITCOIN
    • ALTCOIN
  • BLOCKCHAIN
  • EXCHANGE
  • ADOPTION
  • TRADING
  • HACKING
  • SLOT
  • TRADE
Crypto Flexs
Home»ADOPTION NEWS»NVIDIA’s EMBark revolutionizes training large-scale recommender systems.
ADOPTION NEWS

NVIDIA’s EMBark revolutionizes training large-scale recommender systems.

By Crypto FlexsNovember 25, 20242 Mins Read
Facebook Twitter Pinterest LinkedIn Tumblr Email
NVIDIA’s EMBark revolutionizes training large-scale recommender systems.
Share
Facebook Twitter LinkedIn Pinterest Email

Ted Hisokawa
November 21, 2024 02:40

NVIDIA introduces EMBark, which optimizes the embedding process to power deep learning recommendation models and significantly increases training efficiency for large-scale systems.





In an effort to increase the efficiency of large-scale recommender systems, NVIDIA introduced EMBark, a new approach that aims to optimize the embedding process of deep learning recommendation models. According to NVIDIA, recommender systems play a central role in the Internet industry, and training them efficiently is a critical task for many companies.

Challenges of training recommendation systems

Deep learning recommendation models (DLRMs) often incorporate billions of identity features and require robust training solutions. Recent advances in GPU technology, such as NVIDIA Merlin HugeCTR and TorchRec, have improved DLRM training by leveraging GPU memory to handle large-scale identity feature embeddings. However, as the number of GPUs increases, the communication overhead during embedding becomes a bottleneck, sometimes accounting for more than half of the total training overhead.

EMBark’s innovative approach

EMBark, presented at RecSys 2024, addresses these challenges by implementing a 3D flexible sharding strategy and communication compression techniques, aiming to balance the load during training and reduce communication time for embedding. The EMBark system includes three core components: an embedding cluster, a flexible 3D sharding scheme, and a sharding planner.

Includes cluster

These clusters promote efficient training by grouping similar features and applying custom compression strategies. EMBark categorizes clusters into data-parallel (DP), reduction-based (RB), and unique-based (UB) types, each suitable for different training scenarios.

Flexible 3D sharding method

This innovative scheme allows precise control of workload balancing across GPUs by leveraging 3D tuples to represent each shard. This flexibility addresses imbalance issues found in traditional sharding methods.

Sharding Planner

The sharding planner uses a greedy search algorithm to determine the optimal sharding strategy and improves the training process based on hardware and embedding configuration.

Performance and Evaluation

The efficiency of EMBark was tested on NVIDIA DGX H100 nodes, demonstrating significant improvements in training throughput. Across a variety of DLRM models, EMBark achieves an average 1.5x increase in training speed, with some configurations being up to 1.77x faster than existing methods.

EMBark significantly improves the efficiency of large-scale recommender system models by strengthening the embedding process, setting a new standard for deep learning recommender systems. To get more detailed insight into EMBark’s performance, you can view its research paper.

Image source: Shutterstock


Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Gala Games improves leader board rewards and introduces preference systems.

June 20, 2025

Ether Leeum Whale starts a $ 11 million leverage betting in the 30% increase in ETH prices.

June 12, 2025

AI starts a cost -effective batch API for LLM request.

June 12, 2025
Add A Comment

Comments are closed.

Recent Posts

CARV’s New Roadmap Signals Next Wave Of Web3 AI

June 27, 2025

CARV’s New Roadmap Signals Next Wave Of Web3 AI

June 27, 2025

Bybit Expands Global Reach With Credit Card Crypto Purchases In 25+ Currencies And Cashback Rewards

June 27, 2025

BYDFi Joins Seoul Meta Week 2025, Advancing Web3 Vision And South Korea Strategy

June 27, 2025

Earns $9,800 Per Day With BTC Breaks Through $107,000, GoldenMining Global Market.

June 27, 2025

Why Bakkt Holdings can buy Bitcoin with a $ 1 billion increase

June 27, 2025

NVIDIA RTX strengthens FITY’s AI -centered innovation in Cooler Design.

June 27, 2025

Join Earn Mining To Mine Easily And Earn $7752 A Day

June 26, 2025

Bitcoin prices return to green -building exercise for more profits

June 26, 2025

Weed® Announces Partnership With Khalifa Kush; Launches Global Commercialization

June 26, 2025

GBM Launches Auction Festival With The Sandbox, Aavegotchi, Unstoppable Domains, And More

June 26, 2025

Crypto Flexs is a Professional Cryptocurrency News Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of Cryptocurrency. We hope you enjoy our Cryptocurrency News as much as we enjoy offering them to you.

Contact Us : Partner(@)Cryptoflexs.com

Top Insights

CARV’s New Roadmap Signals Next Wave Of Web3 AI

June 27, 2025

CARV’s New Roadmap Signals Next Wave Of Web3 AI

June 27, 2025

Bybit Expands Global Reach With Credit Card Crypto Purchases In 25+ Currencies And Cashback Rewards

June 27, 2025
Most Popular

BitPay expands cryptocurrency payment options with new coin support

January 10, 2024

Annual International Business Conference InvestPro UAE Dubai 2024

January 9, 2024

The Bitwise Ethereum ETF recorded a seed investment of $100 million in Pantera interest and filings.

June 19, 2024
  • Home
  • About Us
  • Contact Us
  • Disclaimer
  • Privacy Policy
  • Terms and Conditions
© 2025 Crypto Flexs

Type above and press Enter to search. Press Esc to cancel.