Crypto Flexs
  • DIRECTORY
  • CRYPTO
    • ETHEREUM
    • BITCOIN
    • ALTCOIN
  • BLOCKCHAIN
  • EXCHANGE
  • TRADING
  • SUBMIT
Crypto Flexs
  • DIRECTORY
  • CRYPTO
    • ETHEREUM
    • BITCOIN
    • ALTCOIN
  • BLOCKCHAIN
  • EXCHANGE
  • TRADING
  • SUBMIT
Crypto Flexs
Home»ADOPTION NEWS»Reading chunks and UVMs to improve Polars GPU Parquet Reader Performance
ADOPTION NEWS

Reading chunks and UVMs to improve Polars GPU Parquet Reader Performance

By Crypto FlexsApril 14, 20253 Mins Read
Facebook Twitter Pinterest LinkedIn Tumblr Email
Reading chunks and UVMs to improve Polars GPU Parquet Reader Performance
Share
Facebook Twitter LinkedIn Pinterest Email

Ted Hirokawa
April 11, 2025 07:05

Polars GPU Parquet Reader uses chunky reading and integrated virtual memory to improve performance to improve the data processing function of large data sets.





The performance of the data processing tool is important when processing large data sets. According to NVIDIA’s blogs, Polars, a famous open source library with speed and efficiency, now provides back -ends withdrawal from the GPU driven by CUDF to greatly improve their performance.

Solving tasks with unchunked readers

Polars GPU Parquet Reader (up to 24.10) had a problem with scaling when processing a larger data set. As the scale factors increased, the performance decreased especially beyond the SF200 mark. This is due to memory constraints when loading a significant paracket file to the GPU’s memory.

Introduction to Chunk Park Reading

In order to alleviate memory limitations, a green park reader has been introduced. By reading a parquet file in a small chunk, you can reduce memory footprints to make the polars GPU more efficiently processed. For example, if you implement a 16GB pass lead tree, you can run better in various queries compared to the quartet.

Use UVM (Unified Virtual Memory)

Chunked Reading improves memory management, but integrating UVM enhances performance by allowing GPUs to access system memory directly. This reduces memory constraints and improves data transfer efficiency. The combination of chunk reading and UVM can affect throughput, but can successfully run queries in higher scale factors.

Stability and throughput optimization

Select Rights pass_read_limit It is essential to maintain stability and throughput balance. The 16GB or 32GB limit is optimal, and the former allows all queries to succeed without exception without memory. This optimization is important for maintaining high performance in larger data sets.

Compare the Chunk GPU and CPU approach

Even with chunks, the observed throughput usually surpasses the processing amount of CPU -based polar. 16GB or 32GB pass_read_limit It promotes successful execution at higher factors compared to how to shine, making chunks GPU a good choice to handle a wide range of data sets.

conclusion

In the case of the Polars GPU, using UVM is more effective than CPU -based methods and readers, especially large data sets and large factors. By optimizing the data load process, you can unlock significant performance improvements. recent cudf-polars (Version 24.12 or more), Chunked Parquet Reader and UVM are standard approaches, providing significant improvements in all query and scale factors.

For more information, visit the NVIDIA blog.

Image Source: Shutter Stock


Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Hong Kong regulators have set a sustainable finance roadmap for 2026-2028.

January 30, 2026

ETH has recorded a negative funding rate, but is ETH under $3K discounted?

January 22, 2026

AAVE price prediction: $185-195 recovery target in 2-4 weeks

January 6, 2026
Add A Comment

Comments are closed.

Recent Posts

INVESTING YACHTS Launches RWA Yacht Charter Model

February 8, 2026

Polygon prices hit a double bottom as Tazapay, Revolut, Paxos and Moonpay payments rise.

February 8, 2026

ZenO launches public beta integrated with Stories for real-world data collection to support physical AI

February 7, 2026

BlackRock Bitcoin ETF options saw record activity during the crash, sparking hedge fund explosion theories.

February 7, 2026

ZenO launches public beta integrated with Stories for real-world data collection to support physical AI

February 7, 2026

Slot drops $180,000 in one blink.

February 6, 2026

Vault12 launches open source capacitor plugin for quantum-safe data storage

February 6, 2026

Metaplanet will continue buying Bitcoin despite crash, MTPLF down 20%

February 6, 2026

Phemex Introduces 24/7 TradFi Futures Trading With 0-Fee Carnival, Creating An All-in-One Trading Hub

February 6, 2026

The best privacy protection coin that will lead the next-generation cryptocurrency bull market

February 6, 2026

‘Real users vote with money’ – Binance maintains global lead despite FUD

February 5, 2026

Crypto Flexs is a Professional Cryptocurrency News Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of Cryptocurrency. We hope you enjoy our Cryptocurrency News as much as we enjoy offering them to you.

Contact Us : Partner(@)Cryptoflexs.com

Top Insights

INVESTING YACHTS Launches RWA Yacht Charter Model

February 8, 2026

Polygon prices hit a double bottom as Tazapay, Revolut, Paxos and Moonpay payments rise.

February 8, 2026

ZenO launches public beta integrated with Stories for real-world data collection to support physical AI

February 7, 2026
Most Popular

Flash Loan Re -creation Attack -Ackee Blockchain

April 12, 2025

Ethereum (ETH) and BNB supporters explore high-yield opportunities through Raffle Coin’s (RAFF) lottery platform.

April 1, 2024

BNB Chain Follows Ethereum’s Footsteps for New Upgrade

March 14, 2024
  • Home
  • About Us
  • Contact Us
  • Disclaimer
  • Privacy Policy
  • Terms and Conditions
© 2026 Crypto Flexs

Type above and press Enter to search. Press Esc to cancel.