Crypto Flexs
  • DIRECTORY
  • CRYPTO
    • ETHEREUM
    • BITCOIN
    • ALTCOIN
  • BLOCKCHAIN
  • EXCHANGE
  • TRADING
  • SUBMIT
Crypto Flexs
  • DIRECTORY
  • CRYPTO
    • ETHEREUM
    • BITCOIN
    • ALTCOIN
  • BLOCKCHAIN
  • EXCHANGE
  • TRADING
  • SUBMIT
Crypto Flexs
Home»ADOPTION NEWS»Strengthening action recognition models using synthetic data
ADOPTION NEWS

Strengthening action recognition models using synthetic data

By Crypto FlexsDecember 3, 20243 Mins Read
Facebook Twitter Pinterest LinkedIn Tumblr Email
Strengthening action recognition models using synthetic data
Share
Facebook Twitter LinkedIn Pinterest Email

Wang Long Chai
December 3, 2024 19:31

NVIDIA explores the use of synthetic data to improve behavioral recognition models, highlighting the benefits and applications across industries such as retail and healthcare.





In an effort to advance the field of gesture recognition, NVIDIA has been leveraging synthetic data to improve the capabilities of models such as PoseClassificationNet. According to an NVIDIA blog post written by Monika Jhuria, this approach is especially useful in scenarios where collecting real-world data is expensive or impractical.

Challenges in Action Recognition

Gesture recognition models are designed to identify and classify human movements, such as walking or waving. However, developing robust models that can accurately recognize a wide range of behaviors across a variety of scenarios remains challenging. The biggest obstacle is acquiring sufficient and diverse training data. Synthetic data generation (SDG) emerges as a practical solution to this problem by simulating real-world scenarios through 3D simulation.

Synthetic Data Generation with NVIDIA Isaac Sim

NVIDIA’s Isaac Sim, a reference application built on NVIDIA Omniverse, plays a key role in generating synthetic data. It is used in various areas such as retail stores, sports, warehouses, hospitals, etc. This process involves generating artificial data from a 3D simulation that mimics real data, allowing the model to evolve efficiently through iterative training.

Creating a human action recognition dataset

NVIDIA has developed a method to generate datasets for gesture recognition models using Isaac Sim. This involves creating action animations and extracting key points as input to the model. Isaac Sim’s Omni.Replicator.Agent extension facilitates the creation of synthetic data in a variety of 3D environments, providing features such as multi-camera consistency and location randomization.

Extend model capabilities with synthetic data

The generated synthetic data is used to extend the capabilities of the spatial-temporal graph convolutional network (ST-GCN) model. This model detects human actions based on skeletal information. NVIDIA’s approach includes training models such as PoseClassificationNet on 3D skeletal data generated by Isaac Sim using NVIDIA TAO for efficient training and fine-tuning.

Training and testing results

In our tests, the ST-GCN model trained only on synthetic data achieved an impressive average accuracy of 97% across 85 task classes. This performance was further validated using the NTU-RGB+D dataset, showing that the model can generalize well even when applied to real data that has not been explicitly trained.

Scale and scale data generation

NVIDIA also explored using NVIDIA OSMO, a cloud-native orchestration platform, to scale the data creation process. This significantly accelerates data generation, allowing you to generate thousands of samples with different action animations and camera angles.

For more information about NVIDIA’s approach to extending action recognition models using synthetic data, see the NVIDIA blog.

Image source: Shutterstock


Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

ETH has recorded a negative funding rate, but is ETH under $3K discounted?

January 22, 2026

AAVE price prediction: $185-195 recovery target in 2-4 weeks

January 6, 2026

Is BTC Price Heading To $85,000?

December 29, 2025
Add A Comment

Comments are closed.

Recent Posts

Towards 2026 – How Multi-Currency Cloud Mining Can Build Sustainable Daily Settlement Returns Of 5000 XRP

January 26, 2026

BlackRock supports Ethereum gatekeeping tokenization despite market share being threatened.

January 26, 2026

Crypto.Casino Launches To Bring Transparency And Trust To Crypto Casinos

January 26, 2026

Why is SKY rising +8% while other cryptocurrencies are in the red?

January 25, 2026

Uniswap Price Outlook As Ethereum’s Vitalik Buterin Offloads UNI Tokens

January 25, 2026

Ethereum Bulls Need to Conquer $3,050 Otherwise, momentum is lost quickly.

January 25, 2026

The Solana privacy coin just skyrocketed 60%, so why now?

January 25, 2026

What are Stable Coins?

January 24, 2026

Everstake lump sum deposit contract audit

January 23, 2026

Is Ethereum preparing to break $4,000 as BitMine chases its 5% supply stake?

January 23, 2026

TokenFi Unveils High-Visibility Branding Campaign Across Italy Ahead Of 2026 Winter Olympics

January 23, 2026

Crypto Flexs is a Professional Cryptocurrency News Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of Cryptocurrency. We hope you enjoy our Cryptocurrency News as much as we enjoy offering them to you.

Contact Us : Partner(@)Cryptoflexs.com

Top Insights

Towards 2026 – How Multi-Currency Cloud Mining Can Build Sustainable Daily Settlement Returns Of 5000 XRP

January 26, 2026

BlackRock supports Ethereum gatekeeping tokenization despite market share being threatened.

January 26, 2026

Crypto.Casino Launches To Bring Transparency And Trust To Crypto Casinos

January 26, 2026
Most Popular

Why is there a lack of demand for ETH after the Ethereum ETF?

July 30, 2024

Easily earn $ 5,980 a day and get $ 500 for participation and Fanshash Cloudmining

May 27, 2025

BitMEX Launches Equity Perps for 24/7 Stock Trading

January 8, 2026
  • Home
  • About Us
  • Contact Us
  • Disclaimer
  • Privacy Policy
  • Terms and Conditions
© 2026 Crypto Flexs

Type above and press Enter to search. Press Esc to cancel.