Crypto Flexs
  • DIRECTORY
  • CRYPTO
    • ETHEREUM
    • BITCOIN
    • ALTCOIN
  • BLOCKCHAIN
  • EXCHANGE
  • TRADING
  • SUBMIT
Crypto Flexs
  • DIRECTORY
  • CRYPTO
    • ETHEREUM
    • BITCOIN
    • ALTCOIN
  • BLOCKCHAIN
  • EXCHANGE
  • TRADING
  • SUBMIT
Crypto Flexs
Home»ADOPTION NEWS»Strengthening action recognition models using synthetic data
ADOPTION NEWS

Strengthening action recognition models using synthetic data

By Crypto FlexsDecember 3, 20243 Mins Read
Facebook Twitter Pinterest LinkedIn Tumblr Email
Strengthening action recognition models using synthetic data
Share
Facebook Twitter LinkedIn Pinterest Email

Wang Long Chai
December 3, 2024 19:31

NVIDIA explores the use of synthetic data to improve behavioral recognition models, highlighting the benefits and applications across industries such as retail and healthcare.





In an effort to advance the field of gesture recognition, NVIDIA has been leveraging synthetic data to improve the capabilities of models such as PoseClassificationNet. According to an NVIDIA blog post written by Monika Jhuria, this approach is especially useful in scenarios where collecting real-world data is expensive or impractical.

Challenges in Action Recognition

Gesture recognition models are designed to identify and classify human movements, such as walking or waving. However, developing robust models that can accurately recognize a wide range of behaviors across a variety of scenarios remains challenging. The biggest obstacle is acquiring sufficient and diverse training data. Synthetic data generation (SDG) emerges as a practical solution to this problem by simulating real-world scenarios through 3D simulation.

Synthetic Data Generation with NVIDIA Isaac Sim

NVIDIA’s Isaac Sim, a reference application built on NVIDIA Omniverse, plays a key role in generating synthetic data. It is used in various areas such as retail stores, sports, warehouses, hospitals, etc. This process involves generating artificial data from a 3D simulation that mimics real data, allowing the model to evolve efficiently through iterative training.

Creating a human action recognition dataset

NVIDIA has developed a method to generate datasets for gesture recognition models using Isaac Sim. This involves creating action animations and extracting key points as input to the model. Isaac Sim’s Omni.Replicator.Agent extension facilitates the creation of synthetic data in a variety of 3D environments, providing features such as multi-camera consistency and location randomization.

Extend model capabilities with synthetic data

The generated synthetic data is used to extend the capabilities of the spatial-temporal graph convolutional network (ST-GCN) model. This model detects human actions based on skeletal information. NVIDIA’s approach includes training models such as PoseClassificationNet on 3D skeletal data generated by Isaac Sim using NVIDIA TAO for efficient training and fine-tuning.

Training and testing results

In our tests, the ST-GCN model trained only on synthetic data achieved an impressive average accuracy of 97% across 85 task classes. This performance was further validated using the NTU-RGB+D dataset, showing that the model can generalize well even when applied to real data that has not been explicitly trained.

Scale and scale data generation

NVIDIA also explored using NVIDIA OSMO, a cloud-native orchestration platform, to scale the data creation process. This significantly accelerates data generation, allowing you to generate thousands of samples with different action animations and camera angles.

For more information about NVIDIA’s approach to extending action recognition models using synthetic data, see the NVIDIA blog.

Image source: Shutterstock


Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

ETH ETF loses $242M despite holding $2K in Ether

February 15, 2026

Hong Kong regulators have set a sustainable finance roadmap for 2026-2028.

January 30, 2026

ETH has recorded a negative funding rate, but is ETH under $3K discounted?

January 22, 2026
Add A Comment

Comments are closed.

Recent Posts

Unicity Labs Raises $3M To Scale Autonomous Agentic Marketplaces

February 19, 2026

Web3 Advertising Grows Up What Brands Will Demand In 2026

February 19, 2026

Are Sweeps Coins A Cryptocurrency Or Something Else?

February 19, 2026

XRP gains momentum as Arizona adds XRP to state cryptocurrency reserves.

February 19, 2026

Phemex Launches AI-Native Revolution, Signaling Full-Scale AI Transformation

February 19, 2026

Stablecoins for business payments – Enterprise Ethereum Alliance

February 19, 2026

Institutional investors sold $3.74 billion in Bitcoin and cryptocurrencies in just one month as BTC price craters: CoinShares

February 19, 2026

Why Wall Street is starting to take prediction markets seriously

February 18, 2026

Ethereum Price Anchors $1,920 — Can Bulls Spark a New Uptrend?

February 18, 2026

Sai Launches Perps Platform Combining CEX Speed With Onchain Settlement

February 18, 2026

Why altcoin season is unlikely to open in early 2026, according to data

February 18, 2026

Crypto Flexs is a Professional Cryptocurrency News Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of Cryptocurrency. We hope you enjoy our Cryptocurrency News as much as we enjoy offering them to you.

Contact Us : Partner(@)Cryptoflexs.com

Top Insights

Unicity Labs Raises $3M To Scale Autonomous Agentic Marketplaces

February 19, 2026

Web3 Advertising Grows Up What Brands Will Demand In 2026

February 19, 2026

Are Sweeps Coins A Cryptocurrency Or Something Else?

February 19, 2026
Most Popular

How a Trading Bot Made $6.8 Million from Pump.fun Memecoins

November 26, 2024

The Daily: eToro settles with SEC, Grayscale launches new XRP Trust, Standard Chartered predicts Bitcoin will hit new all-time high by year-end, and more

September 12, 2024

Top trader warns that capitulation event for Solana-based Dogecoin rivals is imminent – here’s his outlook:

June 26, 2024
  • Home
  • About Us
  • Contact Us
  • Disclaimer
  • Privacy Policy
  • Terms and Conditions
© 2026 Crypto Flexs

Type above and press Enter to search. Press Esc to cancel.