Crypto Flexs
  • DIRECTORY
  • CRYPTO
    • ETHEREUM
    • BITCOIN
    • ALTCOIN
  • BLOCKCHAIN
  • EXCHANGE
  • TRADING
  • SUBMIT
Crypto Flexs
  • DIRECTORY
  • CRYPTO
    • ETHEREUM
    • BITCOIN
    • ALTCOIN
  • BLOCKCHAIN
  • EXCHANGE
  • TRADING
  • SUBMIT
Crypto Flexs
Home»ADOPTION NEWS»Claude 3.5 Sonnet, Enhanced Audio Data Analysis via Python
ADOPTION NEWS

Claude 3.5 Sonnet, Enhanced Audio Data Analysis via Python

By Crypto FlexsJuly 21, 20243 Mins Read
Facebook Twitter Pinterest LinkedIn Tumblr Email
Claude 3.5 Sonnet, Enhanced Audio Data Analysis via Python
Share
Facebook Twitter LinkedIn Pinterest Email

Terryl Dickey
July 20, 2024 11:23

Learn how to implement a seamless integration using AssemblyAI’s LeMUR framework and use the Claude 3 model with audio data in Python.





Anthropic’s recently released Claude 3.5 Sonnet sets a new industry benchmark for a variety of LLM tasks. The model excels at complex coding, nuanced literary analysis, and demonstrates exceptional contextual awareness and creativity.

According to AssemblyAI, users can now learn how to leverage Claude 3.5 Sonnet, Claude 3 Opus, and Claude 3 Haiku with audio or video files in Python.

claude3_remer_pipeline.png
Pipeline for applying the Claude 3 model to audio data

Some use cases for this pipeline include:

  • Create a summary of a long podcast or YouTube video
  • Ask a question about audio content
  • Create action items in meetings

How does it work?

Since language models primarily work with text data, they first need to transcribe audio data. Multimodal models can solve this, but they are still in the early stages of development.

To achieve this, AssemblyAI’s LeMUR framework is used. LeMUR simplifies the process by allowing you to combine industry-leading Speech AI models with LLM in just a few lines of code.

SDK Setup

To get started, install the AssemblyAI Python SDK, which includes all of LeMUR’s features.

pip install assemblyai

Then import the package and set up an API key, which you can get for free here.

import assemblyai as aai
aai.settings.api_key = "YOUR_API_KEY"

Transcribe audio or video files

Next, set up your audio or video file to transcribe. Transcriber And call transcribe() Function. You can pass a local file or a publicly accessible URL. For example, you could use an episode of Lenny’s podcast featuring Dalton Caldwell of Y Combinator.

audio_url = "https://storage.googleapis.com/aai-web-samples/lennyspodcast-daltoncaldwell-ycstartups.m4a"

transcriber = aai.Transcriber()
transcript = transcriber.transcribe(audio_url)

print(transcript.text)

Using Claude 3.5 Sonnet with Audio Data

The Claude 3.5 Sonnet is Anthropic’s most advanced model to date, outperforming the Claude 3 Opus in a number of evaluations while also being more cost-effective.

Please call to use Sonnet 3.5. transcript.lemur.task()A flexible endpoint that allows you to specify any prompt. It automatically adds the script as additional context to your model.

Specify aai.LemurModel.claude3_5_sonnet When calling LLM on a model. Here’s an example of a simple summary prompt:

prompt = "Provide a brief summary of the transcript."

result = transcript.lemur.task(
    prompt, final_model=aai.LemurModel.claude3_5_sonnet
)

print(result.response)

Using Claude 3 Opus with audio data

Claude 3 Opus is adept at handling complex analyses, long-term tasks with multiple steps, and high-level mathematical and coding tasks.

To use Opus, specify: aai.LemurModel.claude3_opus When calling LLM for a model, here is an example of a prompt that extracts specific information from a transcript.

prompt = "Extract all advice Dalton gives in this podcast episode. Use bullet points."

result = transcript.lemur.task(
    prompt, final_model=aai.LemurModel.claude3_opus
)

print(result.response)

Using Claude 3 Haiku with audio data

The Claude 3 Haiku is our fastest and most cost-effective model, ideal for light workloads.

To use Haiku, specify: aai.LemurModel.claude3_haiku When you call an LLM, it’s about the model. Here’s an example of a simple prompt to ask a question:

prompt = "What are tar pit ideas?"

result = transcript.lemur.task(
    prompt, final_model=aai.LemurModel.claude3_haiku
)

print(result.response)

Learn more about Prompt Engineering

Applying the Claude 3 model to audio data is straightforward using the AssemblyAI and LeMUR frameworks. To maximize the benefits of the LeMUR and Claude 3 models, please refer to the additional resources provided by AssemblyAI.

Image source: Shutterstock


Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Michael Burry’s Short-Term Investment in the AI ​​Market: A Cautionary Tale Amid the Tech Hype

November 19, 2025

BTC Rebound Targets $110K, but CME Gap Cloud Forecasts

November 11, 2025

TRX Price Prediction: TRON targets $0.35-$0.62 despite the current oversold situation.

October 26, 2025
Add A Comment

Comments are closed.

Recent Posts

Metaplanet plans to raise $135 million to buy more Bitcoin.

November 22, 2025

MEXC Launches Ethereum Eco Month With $1 Million Prize Pool

November 21, 2025

The RWA market is expected to surge in 2026, according to Plume Growth Forecast.

November 21, 2025

BTC price could be range-bound to $60,000-$80,000 pending a rate cut.

November 20, 2025

VerifiedX Partners With Crypto.com For Institutional Custody And Liquidity Solution

November 20, 2025

Bitcoin Policy Institute Launches Interactive US Tax Payment Model to Support Bitcoin For America Act

November 20, 2025

Lido Triggerable Withdrawal Audit – Ackee Blockchain

November 20, 2025

Numerai Raises $30 Million Series C Led By Top University Endowments, At $500 Million Valuation

November 20, 2025

Logos Unifies Under One Identity To Deliver A Private Tech Stack To Revitalise Civil Society

November 20, 2025

Tapbit Marks 4th Anniversary With Continued Focus On Innovation And User Trust

November 20, 2025

Reuters: Brazil considers taxing international cryptocurrency payments

November 20, 2025

Crypto Flexs is a Professional Cryptocurrency News Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of Cryptocurrency. We hope you enjoy our Cryptocurrency News as much as we enjoy offering them to you.

Contact Us : Partner(@)Cryptoflexs.com

Top Insights

Metaplanet plans to raise $135 million to buy more Bitcoin.

November 22, 2025

MEXC Launches Ethereum Eco Month With $1 Million Prize Pool

November 21, 2025

The RWA market is expected to surge in 2026, according to Plume Growth Forecast.

November 21, 2025
Most Popular

Hong Kong regulator to review cryptocurrency rules ‘where appropriate’, finance minister says

July 3, 2024

Solana: Could soaring indicators add fuel to SOL’s rally?

December 24, 2023

HKMC reports financial highlights in 2024 among market problems.

May 26, 2025
  • Home
  • About Us
  • Contact Us
  • Disclaimer
  • Privacy Policy
  • Terms and Conditions
© 2025 Crypto Flexs

Type above and press Enter to search. Press Esc to cancel.