Crypto Flexs
  • DIRECTORY
  • CRYPTO
    • ETHEREUM
    • BITCOIN
    • ALTCOIN
  • BLOCKCHAIN
  • EXCHANGE
  • TRADING
  • SUBMIT
Crypto Flexs
  • DIRECTORY
  • CRYPTO
    • ETHEREUM
    • BITCOIN
    • ALTCOIN
  • BLOCKCHAIN
  • EXCHANGE
  • TRADING
  • SUBMIT
Crypto Flexs
Home»ADOPTION NEWS»Here’s why GPT-4 is ‘dumb’: Untangling the performance hit
ADOPTION NEWS

Here’s why GPT-4 is ‘dumb’: Untangling the performance hit

By Crypto FlexsJanuary 3, 20243 Mins Read
Facebook Twitter Pinterest LinkedIn Tumblr Email
Here’s why GPT-4 is ‘dumb’: Untangling the performance hit
Share
Facebook Twitter LinkedIn Pinterest Email

The areas of artificial intelligence (AI) and machine learning (ML) continue to advance, but they are not without obstacles. A classic example is the performance degradation colloquially referred to as ‘stupidity’ in large language models (LLMs) such as GPT-4. This issue has gained attention in AI discussions, especially since the publication of “Work Pollution: Language Models May No longer be Few-Shot,” which highlights the limitations and challenges currently facing LLM.

Chomba Bupe, a representative figure in the AI ​​community, highlighted X (formerly Twitter) has a major problem. LLMs tend to excel on the tasks and datasets they are trained on, but tend to falter on new, unseen data. The crux of the problem lies in the static nature of post-training in these models. Once the learning phase is complete, performance gradually deteriorates due to limited ability to adapt to new and evolving input distributions.

Source: DALL·E Generation

This performance degradation is of particular concern in areas such as programming, where language models are used and programming language updates occur frequently. Bupe points out that the basic design of the LLM is closer to memorization than understanding, which limits its effectiveness in solving new challenges.

Research conducted by Changmao Li and Jeffrey Flanigan further supports this view. They found that LLMs like GPT-3 outperform on older data sets than on training data. This finding is indicative of a phenomenon called task contamination, where a model’s zero-shot and few-shot features are compromised by limitations in the training data.

Continuous learning, as discussed by Bupe, emerges as a key area of ​​machine intelligence. The challenge is to develop ML models that can adapt to new information without compromising performance on previously learned tasks. this difficulty Contrast this with the adaptability of biological neural networks, which learn and adapt without similar drawbacks.

Alvin De Cruz offers an alternative perspective that suggests that the problem may lie in the evolving expectations of humans rather than in the inherent limitations of the model. But Bupe responds by highlighting the long-standing nature of these challenges in AI, particularly in the area of ​​continuous learning.

In summary, the conversation surrounding LLMs like GPT-4 highlights an important aspect of AI evolution: the essentials of models capable of continuous learning and adaptation. Despite its impressive capabilities, LLMs currently face significant limitations in keeping pace with a rapidly changing world, highlighting the need for more dynamic and evolving AI solutions.

Image source: Shutterstock

Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Is BTC Price Heading To $85,000?

December 29, 2025

Crypto’s Capitol Hill champion, Senator Lummis, said he would not seek re-election.

December 21, 2025

Improved GitHub Actions: Announcing performance and flexibility upgrades

December 13, 2025
Add A Comment

Comments are closed.

Recent Posts

SlotGPT launches new AI slots platform that turns players into creators

January 5, 2026

Bitcoin price rises 1.5% as Bitcoiners celebrate Genesis Day

January 4, 2026

Automated wallet leaks raise new cryptocurrency security concerns across the EVM network.

January 3, 2026

Ethereum 2025 Scalability and Decentralization

January 3, 2026

Bitmine Publishes New Chairman’s Message Explaining Why Shareholders Should Vote YES To Approve The Amendment To Increase Authorized Shares

January 2, 2026

Husky Inu AI (HINU) will start trading in 2026 at $0.00024581.

January 2, 2026

Frontnode.com And The Question Of Trust How Responsible Bitcoin Onramps Shape Long-Term Adoption

January 2, 2026

A popular cryptocurrency founder has poured millions of dollars into Ethereum, and here’s what he’s buying:

January 2, 2026

Tether quietly adds 8,888 BTC, tapping 96,369 coins from Bitcoin Stash.

January 1, 2026

ASTER price outlook as whale loses 3 million coins

January 1, 2026

Cardano (ADA) Aims Higher – Bullish Setup Hints for New Legs

January 1, 2026

Crypto Flexs is a Professional Cryptocurrency News Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of Cryptocurrency. We hope you enjoy our Cryptocurrency News as much as we enjoy offering them to you.

Contact Us : Partner(@)Cryptoflexs.com

Top Insights

SlotGPT launches new AI slots platform that turns players into creators

January 5, 2026

Bitcoin price rises 1.5% as Bitcoiners celebrate Genesis Day

January 4, 2026

Automated wallet leaks raise new cryptocurrency security concerns across the EVM network.

January 3, 2026
Most Popular

Primary network TVL exceeds $3 billion and daily users exceed 5 million.

March 30, 2024

Coinbase CEO Brian Armstrong is optimistic about on-chain gaming and advertising.

November 27, 2023

Hong Kong SFC warns cryptocurrency exchanges

February 6, 2024
  • Home
  • About Us
  • Contact Us
  • Disclaimer
  • Privacy Policy
  • Terms and Conditions
© 2026 Crypto Flexs

Type above and press Enter to search. Press Esc to cancel.