Crypto Flexs
  • DIRECTORY
  • CRYPTO
    • ETHEREUM
    • BITCOIN
    • ALTCOIN
  • BLOCKCHAIN
  • EXCHANGE
  • ADOPTION
  • TRADING
  • HACKING
  • SLOT
  • TRADE
Crypto Flexs
  • DIRECTORY
  • CRYPTO
    • ETHEREUM
    • BITCOIN
    • ALTCOIN
  • BLOCKCHAIN
  • EXCHANGE
  • ADOPTION
  • TRADING
  • HACKING
  • SLOT
  • TRADE
Crypto Flexs
Home»ADOPTION NEWS»Here’s why GPT-4 is ‘dumb’: Untangling the performance hit
ADOPTION NEWS

Here’s why GPT-4 is ‘dumb’: Untangling the performance hit

By Crypto FlexsJanuary 3, 20243 Mins Read
Facebook Twitter Pinterest LinkedIn Tumblr Email
Here’s why GPT-4 is ‘dumb’: Untangling the performance hit
Share
Facebook Twitter LinkedIn Pinterest Email

The areas of artificial intelligence (AI) and machine learning (ML) continue to advance, but they are not without obstacles. A classic example is the performance degradation colloquially referred to as ‘stupidity’ in large language models (LLMs) such as GPT-4. This issue has gained attention in AI discussions, especially since the publication of “Work Pollution: Language Models May No longer be Few-Shot,” which highlights the limitations and challenges currently facing LLM.

Chomba Bupe, a representative figure in the AI ​​community, highlighted X (formerly Twitter) has a major problem. LLMs tend to excel on the tasks and datasets they are trained on, but tend to falter on new, unseen data. The crux of the problem lies in the static nature of post-training in these models. Once the learning phase is complete, performance gradually deteriorates due to limited ability to adapt to new and evolving input distributions.

Source: DALL·E Generation

This performance degradation is of particular concern in areas such as programming, where language models are used and programming language updates occur frequently. Bupe points out that the basic design of the LLM is closer to memorization than understanding, which limits its effectiveness in solving new challenges.

Research conducted by Changmao Li and Jeffrey Flanigan further supports this view. They found that LLMs like GPT-3 outperform on older data sets than on training data. This finding is indicative of a phenomenon called task contamination, where a model’s zero-shot and few-shot features are compromised by limitations in the training data.

Continuous learning, as discussed by Bupe, emerges as a key area of ​​machine intelligence. The challenge is to develop ML models that can adapt to new information without compromising performance on previously learned tasks. this difficulty Contrast this with the adaptability of biological neural networks, which learn and adapt without similar drawbacks.

Alvin De Cruz offers an alternative perspective that suggests that the problem may lie in the evolving expectations of humans rather than in the inherent limitations of the model. But Bupe responds by highlighting the long-standing nature of these challenges in AI, particularly in the area of ​​continuous learning.

In summary, the conversation surrounding LLMs like GPT-4 highlights an important aspect of AI evolution: the essentials of models capable of continuous learning and adaptation. Despite its impressive capabilities, LLMs currently face significant limitations in keeping pace with a rapidly changing world, highlighting the need for more dynamic and evolving AI solutions.

Image source: Shutterstock

Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Stablecoin startups surpass 2021 venture capital peaks as institutional money spills.

June 28, 2025

Gala Games improves leader board rewards and introduces preference systems.

June 20, 2025

Ether Leeum Whale starts a $ 11 million leverage betting in the 30% increase in ETH prices.

June 12, 2025
Add A Comment

Comments are closed.

Recent Posts

As Nano Labs begins to accumulate $ 1 billion, BNB gets a big supporter.

July 5, 2025

The Complete Guide to Crypto Website Listing Directories

July 5, 2025

Crypto Directories Listing That Will Transform Your Project’s Reach

July 5, 2025

The Ultimate Guide to Hiring a Crypto Marketing Agency

July 5, 2025

Six high upside encryption coins of less than $ 20 are seen in 2025.

July 5, 2025

Valhalla Goes Today: FLOKI has been developed for 3 years and debuts the play MMORPG.

July 4, 2025

The Open Platform Is First Unicorn In Web3 Ecosystem In Telegram At $1bn Valuation

July 3, 2025

The mindset of Retail Investors

July 3, 2025

Cooking.City Bringing Back Value Redistribution To Solana Fair Launches

July 3, 2025

XRP rebounds are interested in APT miners cloud mining.

July 3, 2025

The market will select US regulatory stable coins more than CBDCS every day of CBDCS every day.

July 3, 2025

Crypto Flexs is a Professional Cryptocurrency News Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of Cryptocurrency. We hope you enjoy our Cryptocurrency News as much as we enjoy offering them to you.

Contact Us : Partner(@)Cryptoflexs.com

Top Insights

As Nano Labs begins to accumulate $ 1 billion, BNB gets a big supporter.

July 5, 2025

The Complete Guide to Crypto Website Listing Directories

July 5, 2025

Crypto Directories Listing That Will Transform Your Project’s Reach

July 5, 2025
Most Popular

🔴 Fake Tweet Shock Market

November 24, 2023

Traders are hoping that the $60K Bitcoin price will boost momentum in ETH, SUI, TAO, and NOT.

August 12, 2024

Hedge Fund Veteran Claims Cryptocurrencies Are Facing a ‘Quiet Abandonment’ Crisis, Reveals Catalyst That Could Trigger Altcoin Revival

September 10, 2024
  • Home
  • About Us
  • Contact Us
  • Disclaimer
  • Privacy Policy
  • Terms and Conditions
© 2025 Crypto Flexs

Type above and press Enter to search. Press Esc to cancel.