Crypto Flexs
  • DIRECTORY
  • CRYPTO
    • ETHEREUM
    • BITCOIN
    • ALTCOIN
  • BLOCKCHAIN
  • EXCHANGE
  • TRADING
  • SUBMIT
Crypto Flexs
  • DIRECTORY
  • CRYPTO
    • ETHEREUM
    • BITCOIN
    • ALTCOIN
  • BLOCKCHAIN
  • EXCHANGE
  • TRADING
  • SUBMIT
Crypto Flexs
Home»ADOPTION NEWS»Here’s why GPT-4 is ‘dumb’: Untangling the performance hit
ADOPTION NEWS

Here’s why GPT-4 is ‘dumb’: Untangling the performance hit

By Crypto FlexsJanuary 3, 20243 Mins Read
Facebook Twitter Pinterest LinkedIn Tumblr Email
Here’s why GPT-4 is ‘dumb’: Untangling the performance hit
Share
Facebook Twitter LinkedIn Pinterest Email

The areas of artificial intelligence (AI) and machine learning (ML) continue to advance, but they are not without obstacles. A classic example is the performance degradation colloquially referred to as ‘stupidity’ in large language models (LLMs) such as GPT-4. This issue has gained attention in AI discussions, especially since the publication of “Work Pollution: Language Models May No longer be Few-Shot,” which highlights the limitations and challenges currently facing LLM.

Chomba Bupe, a representative figure in the AI ​​community, highlighted X (formerly Twitter) has a major problem. LLMs tend to excel on the tasks and datasets they are trained on, but tend to falter on new, unseen data. The crux of the problem lies in the static nature of post-training in these models. Once the learning phase is complete, performance gradually deteriorates due to limited ability to adapt to new and evolving input distributions.

Source: DALL·E Generation

This performance degradation is of particular concern in areas such as programming, where language models are used and programming language updates occur frequently. Bupe points out that the basic design of the LLM is closer to memorization than understanding, which limits its effectiveness in solving new challenges.

Research conducted by Changmao Li and Jeffrey Flanigan further supports this view. They found that LLMs like GPT-3 outperform on older data sets than on training data. This finding is indicative of a phenomenon called task contamination, where a model’s zero-shot and few-shot features are compromised by limitations in the training data.

Continuous learning, as discussed by Bupe, emerges as a key area of ​​machine intelligence. The challenge is to develop ML models that can adapt to new information without compromising performance on previously learned tasks. this difficulty Contrast this with the adaptability of biological neural networks, which learn and adapt without similar drawbacks.

Alvin De Cruz offers an alternative perspective that suggests that the problem may lie in the evolving expectations of humans rather than in the inherent limitations of the model. But Bupe responds by highlighting the long-standing nature of these challenges in AI, particularly in the area of ​​continuous learning.

In summary, the conversation surrounding LLMs like GPT-4 highlights an important aspect of AI evolution: the essentials of models capable of continuous learning and adaptation. Despite its impressive capabilities, LLMs currently face significant limitations in keeping pace with a rapidly changing world, highlighting the need for more dynamic and evolving AI solutions.

Image source: Shutterstock

Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

ETH has recorded a negative funding rate, but is ETH under $3K discounted?

January 22, 2026

AAVE price prediction: $185-195 recovery target in 2-4 weeks

January 6, 2026

Is BTC Price Heading To $85,000?

December 29, 2025
Add A Comment

Comments are closed.

Recent Posts

BTCC Exchange Nears 15-Year Mark With Plans For AI Trading Tools And Expanded RWA Offerings In 2026

January 22, 2026

VR concert debuts on leading Web3 entertainment platform

January 22, 2026

CryptoVista – Free Signals And Analytics That Give You An Edge

January 22, 2026

What does it take to scale tokenized collateral? – Enterprise Ethereum Alliance

January 22, 2026

ETH has recorded a negative funding rate, but is ETH under $3K discounted?

January 22, 2026

Solana Mobile Launches SKR Token Airdrop for Seeker Users and Early Developers

January 22, 2026

Cryptocurrency Inheritance Update: December 2025

January 21, 2026

Casa Casino Launches $CASA Token Presale

January 21, 2026

The U.S. Crypto Question Few Investors Are Asking

January 21, 2026

CFTC launches “future-proofing” program

January 21, 2026

MEXC Adds 32 Tokenized Stocks From Ondo Finance, Expanding Blue-Chip Access For 40 Million Users

January 20, 2026

Crypto Flexs is a Professional Cryptocurrency News Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of Cryptocurrency. We hope you enjoy our Cryptocurrency News as much as we enjoy offering them to you.

Contact Us : Partner(@)Cryptoflexs.com

Top Insights

BTCC Exchange Nears 15-Year Mark With Plans For AI Trading Tools And Expanded RWA Offerings In 2026

January 22, 2026

VR concert debuts on leading Web3 entertainment platform

January 22, 2026

CryptoVista – Free Signals And Analytics That Give You An Edge

January 22, 2026
Most Popular

Ethereum ETF Launch Countdown Everything you need to know before launch

January 29, 2024

Fetch.ai (FET) surges 209% in volume over ASI Alliance

June 20, 2024

Polygon (MATIC) CDK Integrates Bridged USDC Standard for Improved Stability

July 24, 2024
  • Home
  • About Us
  • Contact Us
  • Disclaimer
  • Privacy Policy
  • Terms and Conditions
© 2026 Crypto Flexs

Type above and press Enter to search. Press Esc to cancel.