Crypto Flexs
  • DIRECTORY
  • CRYPTO
    • ETHEREUM
    • BITCOIN
    • ALTCOIN
  • BLOCKCHAIN
  • EXCHANGE
  • TRADING
  • SUBMIT
Crypto Flexs
  • DIRECTORY
  • CRYPTO
    • ETHEREUM
    • BITCOIN
    • ALTCOIN
  • BLOCKCHAIN
  • EXCHANGE
  • TRADING
  • SUBMIT
Crypto Flexs
Home»ADOPTION NEWS»Improve AI Inference on HGX H200 with NVIDIA’s TensorRT-LLM Multiblock Attention
ADOPTION NEWS

Improve AI Inference on HGX H200 with NVIDIA’s TensorRT-LLM Multiblock Attention

By Crypto FlexsNovember 22, 20242 Mins Read
Facebook Twitter Pinterest LinkedIn Tumblr Email
Improve AI Inference on HGX H200 with NVIDIA’s TensorRT-LLM Multiblock Attention
Share
Facebook Twitter LinkedIn Pinterest Email

Caroline Bishop
November 22, 2024 01:19

NVIDIA’s TensorRT-LLM solves the problem of long sequence lengths by introducing multi-block attention to dramatically improve AI inference throughput by up to 3.5x on HGX H200.





In a significant development for AI inference, NVIDIA has unveiled the TensorRT-LLM multi-block attention feature that significantly improves throughput on the NVIDIA HGX H200 platform. According to NVIDIA, this innovation addresses the growing needs of modern generative AI models by improving throughput by more than 3x for long sequence lengths.

Advances in Generative AI

The rapid advancement of generative AI models, exemplified by the Llama 2 and Llama 3.1 series, has introduced models with much larger context windows. For example, the Llama 3.1 model supports context lengths of up to 128,000 tokens. While this expansion allows AI models to perform complex cognitive tasks on a wide range of data sets, it also presents unique challenges in the AI ​​inference environment.

Challenges of AI inference

AI inference, especially with long sequence lengths, faces obstacles such as low latency requirements and small batch size requirements. Existing GPU deployment methods often do not properly utilize the streaming multiprocessor (SM) of NVIDIA GPUs, especially during the decoding phase of inference. This lack of utilization impacts overall system throughput. This is because only a small portion of the GPU SM is used, leaving many resources idle.

Multi-block attention solution

NVIDIA’s TensorRT-LLM multiblock attention solves this challenge by maximizing GPU resource usage. Divide the computation task into smaller blocks and distribute them to all available SMs. This not only alleviates memory bandwidth limitations, but also improves throughput by efficiently utilizing GPU resources during the decoding phase.

Performance of NVIDIA HGX H200

NVIDIA HGX H200’s multi-block attention implementation showed surprising results. This allows the system to generate up to 3.5x more tokens per second for long sequence queries in low-latency scenarios. Using model parallelism, a 3x performance improvement is observed without affecting the time to first token, even when half the GPU resources are used.

Implications and future prospects

These advances in AI inference technology allow existing systems to support longer context lengths without additional hardware investments. TensorRT-LLM multi-block attention is enabled by default, significantly improving the performance of AI models with extensive context requirements. This development highlights NVIDIA’s commitment to advancing AI inference capabilities to more efficiently process complex AI models.

Image source: Shutterstock


Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Improved GitHub Actions: Announcing performance and flexibility upgrades

December 13, 2025

SOL price remains capped at $140 as altcoin ETF competitors reshape cryptocurrency demand.

December 5, 2025

Michael Burry’s Short-Term Investment in the AI ​​Market: A Cautionary Tale Amid the Tech Hype

November 19, 2025
Add A Comment

Comments are closed.

Recent Posts

Fake Zoom malware scam linked to North Korean hackers targets cryptocurrency users

December 18, 2025

Kalshi Integrates TRON Network, Expanding Onchain Liquidity Access For World’s Largest Prediction Market

December 18, 2025

Trump Interviews Pro-Crypto Waller for Fed Chair Today

December 18, 2025

Many Cryptocurrency ETFs Could Shut Soon After Launch: Analyst

December 18, 2025

Jito Foundation says its core operations will return to us. Credits GENIUS Act

December 17, 2025

Space Announces Public Sale Of Its Native Token, $SPACE

December 17, 2025

HKEX Lists HashKey After $206 Million IPO Quickly Sold Out

December 17, 2025

Capture The $140B Prediction Economy Become A Founding Partner Of X-MARKET

December 17, 2025

Bitcoin falls along with Ether and XRP as the market tests the $3 trillion bottom.

December 17, 2025

JZXN In Discussions To Acquire $1B In Tokens From AI Trading Firm At A Discount

December 17, 2025

SaucerSwap Unveils Redesigned Platform And New Brand Identity For Hedera DeFi

December 17, 2025

Crypto Flexs is a Professional Cryptocurrency News Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of Cryptocurrency. We hope you enjoy our Cryptocurrency News as much as we enjoy offering them to you.

Contact Us : Partner(@)Cryptoflexs.com

Top Insights

Fake Zoom malware scam linked to North Korean hackers targets cryptocurrency users

December 18, 2025

Kalshi Integrates TRON Network, Expanding Onchain Liquidity Access For World’s Largest Prediction Market

December 18, 2025

Trump Interviews Pro-Crypto Waller for Fed Chair Today

December 18, 2025
Most Popular

The weaknesses of Altcoin Market and the decrease in trading volume

March 29, 2025

BNB Chain Launches Rollup-as-a-Service Solution to Expand Layer 2 Ecosystem

March 14, 2024

Donald Trump’s return sparks a new era for Bitcoin (BTC) and cryptocurrencies

November 15, 2024
  • Home
  • About Us
  • Contact Us
  • Disclaimer
  • Privacy Policy
  • Terms and Conditions
© 2025 Crypto Flexs

Type above and press Enter to search. Press Esc to cancel.