Crypto Flexs
  • DIRECTORY
  • CRYPTO
    • ETHEREUM
    • BITCOIN
    • ALTCOIN
  • BLOCKCHAIN
  • EXCHANGE
  • TRADING
  • SUBMIT
Crypto Flexs
  • DIRECTORY
  • CRYPTO
    • ETHEREUM
    • BITCOIN
    • ALTCOIN
  • BLOCKCHAIN
  • EXCHANGE
  • TRADING
  • SUBMIT
Crypto Flexs
Home»ADOPTION NEWS»NVIDIA TensorRT-LLM Enhances Encoder-Decoder Models with In-Flight Batching
ADOPTION NEWS

NVIDIA TensorRT-LLM Enhances Encoder-Decoder Models with In-Flight Batching

By Crypto FlexsDecember 12, 20242 Mins Read
Facebook Twitter Pinterest LinkedIn Tumblr Email
NVIDIA TensorRT-LLM Enhances Encoder-Decoder Models with In-Flight Batching
Share
Facebook Twitter LinkedIn Pinterest Email

Peter Jang
December 12, 2024 06:58

NVIDIA’s TensorRT-LLM now supports encoder-decoder models with in-flight placement capabilities, providing optimized inference for AI applications. Discover generative AI improvements on NVIDIA GPUs.





NVIDIA has announced a significant update to TensorRT-LLM, an open source library that includes support for the encoder-decoder model architecture with ongoing batch processing. According to NVIDIA, this development enhances generative AI applications on NVIDIA GPUs by further expanding the library’s capacity to optimize inference across a variety of model architectures.

Expanded model support

TensorRT-LLM has long been an important tool for optimizing inference on models such as decoder-only architectures such as Llama 3.1, expert mixture models such as Mixtral, and selective state space models such as Mamba. In particular, the addition of encoder-decoder models, including T5, mT5, and BART, has significantly expanded functionality. This update supports full tensor parallelism, pipeline parallelism, and hybrid parallelism for these models, ensuring robust performance across a variety of AI tasks.

Improved on-board batch processing and efficiency

In-flight batch integration, also known as continuous batching, plays a pivotal role in managing runtime differences in the encoder-decoder model. These models typically require complex processing for key-value cache management and batch management, especially in scenarios where requests are processed recursively. The latest improvements in TensorRT-LLM streamline this process, delivering high throughput while minimizing latency, which is critical for real-time AI applications.

Production-ready deployment

For companies looking to deploy these models in production, the TensorRT-LLM encoder-decoder model is supported by NVIDIA Triton Inference Server. This open source software simplifies AI inference, allowing you to efficiently deploy optimized models. The Triton TensorRT-LLM backend further improves performance, making it a good choice for production-ready applications.

Junior Adaptation Support

This update also introduces support for Low-Rank Adaptation (LoRA), a fine-tuning technique that reduces memory and compute requirements while maintaining model performance. This feature is particularly useful for customizing models for specific tasks, efficiently serving multiple LoRA adapters within a single deployment, and reducing memory footprint through dynamic loading.

Future improvements

In the future, NVIDIA plans to introduce FP8 quantization to further improve latency and throughput of the encoder-decoder model. These enhancements promise to strengthen NVIDIA’s commitment to advancing AI technology by delivering even faster and more efficient AI solutions.

Image source: Shutterstock


Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Michael Burry’s Short-Term Investment in the AI ​​Market: A Cautionary Tale Amid the Tech Hype

November 19, 2025

BTC Rebound Targets $110K, but CME Gap Cloud Forecasts

November 11, 2025

TRX Price Prediction: TRON targets $0.35-$0.62 despite the current oversold situation.

October 26, 2025
Add A Comment

Comments are closed.

Recent Posts

Metaplanet plans to raise $135 million to buy more Bitcoin.

November 22, 2025

MEXC Launches Ethereum Eco Month With $1 Million Prize Pool

November 21, 2025

The RWA market is expected to surge in 2026, according to Plume Growth Forecast.

November 21, 2025

BTC price could be range-bound to $60,000-$80,000 pending a rate cut.

November 20, 2025

VerifiedX Partners With Crypto.com For Institutional Custody And Liquidity Solution

November 20, 2025

Bitcoin Policy Institute Launches Interactive US Tax Payment Model to Support Bitcoin For America Act

November 20, 2025

Lido Triggerable Withdrawal Audit – Ackee Blockchain

November 20, 2025

Numerai Raises $30 Million Series C Led By Top University Endowments, At $500 Million Valuation

November 20, 2025

Logos Unifies Under One Identity To Deliver A Private Tech Stack To Revitalise Civil Society

November 20, 2025

Tapbit Marks 4th Anniversary With Continued Focus On Innovation And User Trust

November 20, 2025

Reuters: Brazil considers taxing international cryptocurrency payments

November 20, 2025

Crypto Flexs is a Professional Cryptocurrency News Platform. Here we will provide you only interesting content, which you will like very much. We’re dedicated to providing you the best of Cryptocurrency. We hope you enjoy our Cryptocurrency News as much as we enjoy offering them to you.

Contact Us : Partner(@)Cryptoflexs.com

Top Insights

Metaplanet plans to raise $135 million to buy more Bitcoin.

November 22, 2025

MEXC Launches Ethereum Eco Month With $1 Million Prize Pool

November 21, 2025

The RWA market is expected to surge in 2026, according to Plume Growth Forecast.

November 21, 2025
Most Popular

El Salvador offers ‘free visa’ for $1 million cryptocurrency investment

December 8, 2023

GeForce is now expanded to ‘Doom: The Dark Ages’.

May 16, 2025

Llama 3.1 405B achieves 1.5x throughput improvement with NVIDIA H200 GPU and NVLink.

October 11, 2024
  • Home
  • About Us
  • Contact Us
  • Disclaimer
  • Privacy Policy
  • Terms and Conditions
© 2025 Crypto Flexs

Type above and press Enter to search. Press Esc to cancel.